Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

All change in the prostate cancer diagnostic pathway

Abstract

Following detection of high levels of serum prostate-specific antigen, many men are advised to have transrectal ultrasound-guided biopsy in an attempt to locate a cancer. This nontargeted approach lacks accuracy and carries a small risk of potentially life-threatening sepsis. Worse still, it can detect clinically insignificant cancer cells, which are unlikely to be the origin of advanced-stage disease. The detection of these indolent cancer cells has led to overdiagnosis, one of the major problems of contemporary medicine, whereby many men with clinically insignificant disease are advised to undergo unnecessary radical surgery or radiotherapy. Advances in imaging and biomarker discovery have led to a revolution in prostate cancer diagnosis, and nontargeted prostate biopsies should become obsolete. In this Perspective article, we describe the current diagnostic pathway for prostate cancer, which relies on nontargeted biopsies, and the problems linked to this pathway. We then discuss the utility of prebiopsy multiparametric MRI and novel tumour markers. Finally, we comment on how the incorporation of these advances into a new diagnostic pathway will affect the current risk-stratification system and explore future challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transrectal ultrasound-guided prostate biopsy can lead to overdiagnosis or failure to diagnose.
Fig. 2: Transperineal MRI–transrectal ultrasound fusion biopsy.
Fig. 3: Current and proposed diagnostic pathways in prostate cancer.
Fig. 4: Comparison of targeted prostate biopsy and nontargeted transperineal prostate biopsy.
Fig. 5: Multiparametric MRI of the prostate showing a lesion (red circle) highly likely to be clinically significant with extracapsular extension.

Similar content being viewed by others

References

  1. Wang, M., Valenzuela, L., Murphy, G. & Chu, T. Purification of a human prostate specific antigen. Investig. Urol. 17, 159–163 (1979).

    CAS  Google Scholar 

  2. Nadji, M. et al. Prostatic-specific antigen: an immunohistologic marker for prostatic neoplasms. Cancer 48, 1229–1232 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Kuriyama, M. et al. Use of human prostate-specific antigen in monitoring prostate cancer. Cancer Res. 41, 3874–3876 (1981).

    CAS  PubMed  Google Scholar 

  4. Catalona, W. J. et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J. Urol. 151, 1283–1290 (1994).

    Article  PubMed  Google Scholar 

  5. Etzioni, R. et al. Quantifying the role of PSA screening in the US prostate cancer mortality decline. Cancer Causes Control 19, 175–181 (2008).

    Article  PubMed  Google Scholar 

  6. Hodge, K. K., McNeal, J. E. & Stamey, T. A. Ultrasound guided transrectal core biopsies of the palpably abnormal prostate. J. Urol. 142, 66–70 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Weaver, R. P., Noble, M. J. & Weigel, J. W. Correlation of ultrasound guided and digitally directed transrectal biopsies of palpable prostatic abnormalities. J. Urol. 145, 516–518 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Graham, J., Kirkbride, P., Cann, K., Hasler, E. & Prettyjohns, M. Prostate cancer: summary of updated NICE guidance. BMJ 348, f7524 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    Article  PubMed  Google Scholar 

  10. Ploussard, G. et al. Prospective evaluation of an extended 21-core biopsy scheme as initial prostate cancer diagnostic strategy. Eur. Urol. 65, 154–161 (2014).

    Article  PubMed  Google Scholar 

  11. de la Taille, A. et al. Prospective evaluation of a 21-sample needle biopsy procedure designed to improve the prostate cancer detection rate. Urology 61, 1181–1186 (2003).

    Article  PubMed  Google Scholar 

  12. Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

    Article  PubMed  Google Scholar 

  13. Kuehn, B. M. FDA warning and study highlight fluoroquinolone risks. JAMA 310, 1014 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Zaytoun, O. M. et al. Emergence of fluoroquinolone-resistant Escherichia coli as cause of postprostate biopsy infection: implications for prophylaxis and treatment. Urology 77, 1035–1041 (2011).

    Article  PubMed  Google Scholar 

  15. Jiang, P., Liss, M. A. & Szabo, R. J. Targeted antimicrobial prophylaxis does not always prevent sepsis after transrectal prostate biopsy. J. Urol. 200, 361–368 (2018).

    Article  PubMed  Google Scholar 

  16. Taylor, A. K. et al. Targeted antimicrobial prophylaxis using rectal swab cultures in men undergoing transrectal ultrasound guided prostate biopsy is associated with reduced incidence of postoperative infectious complications and cost of care. J. Urol. 187, 1275–1279 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Bloomfield, M. G., Page, M. J., McLachlan, A. G., Studd, R. C. & Blackmore, T. K. Routine ertapenem prophylaxis for transrectal ultrasound guided prostate biopsy does not select for carbapenem resistant organisms: a prospective cohort study. J. Urol. 198, 362–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Adibi, M., Pearle, M. S. & Lotan, Y. Cost-effectiveness of standard vs intensive antibiotic regimens for transrectal ultrasonography (TRUS)-guided prostate biopsy prophylaxis. BJU Int. 110, E86–E91 (2012).

    Article  PubMed  Google Scholar 

  19. Roth, H. et al. The state of TRUS biopsy sepsis: readmissions to Victorian hospitals with TRUS biopsy-related infection over 5 years. BJU Int. 116, 49–53 (2015).

    Article  PubMed  Google Scholar 

  20. Moussa, A. S. et al. Importance of additional “extreme” anterior apical needle biopsies in the initial detection of prostate cancer. Urology 75, 1034–1039 (2010).

    Article  PubMed  Google Scholar 

  21. Kaver, I., Mabjeesh, N. J. & Matzkin, H. Randomized prospective study of periprostatic local anesthesia during transrectal ultrasound-guided prostate biopsy. Urology 59, 405–408 (2002).

    Article  PubMed  Google Scholar 

  22. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    Article  PubMed  Google Scholar 

  23. Scattoni, V. et al. Random biopsy: when, how many and where to take the cores? World J. Urol. 32, 859–869 (2014).

    Article  PubMed  Google Scholar 

  24. Simsir, A., Kismali, E., Mammadov, R., Gunaydin, G. & Cal, C. Is it possible to predict sepsis, the most serious complication in prostate biopsy? Urol. Int. 84, 395–399 (2010).

    Article  PubMed  Google Scholar 

  25. Jeon, S. S., Woo, S.-H., Hyun, J.-H., Choi, H. Y. & Chai, S. E. Bisacodyl rectal preparation can decrease infectious complications of transrectal ultrasound-guided prostate biopsy. Urology 62, 461–466 (2003).

    Article  PubMed  Google Scholar 

  26. Miah, S. et al. Patient reported outcome measures for transperineal template prostate mapping biopsies in the PICTURE study. J. Urol. 200, 1235–1240 (2018).

    Article  PubMed  Google Scholar 

  27. Ahmed, H. U., Arya, M., Freeman, A. & Emberton, M. Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy? Lancet Oncol. 13, e509–e517 (2012).

    Article  PubMed  Google Scholar 

  28. Potosky, A. L. et al. Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J. Natl Cancer Inst. 96, 1358–1367 (2004).

    Article  PubMed  Google Scholar 

  29. Wilt, T. J. et al. Follow-up of prostatectomy versus observation for early prostate cancer. N. Engl. J. Med. 377, 132–142 (2017).

    Article  PubMed  Google Scholar 

  30. Hamdy, F. C. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

    Article  PubMed  Google Scholar 

  31. Salmasi, A. et al. Surgical overtreatment of prostate cancer is declining from 2009 to 2016 at a tertiary referral center. Urol. Oncol. 36, 401.e19–401.e25 (2018).

    Article  Google Scholar 

  32. Bill-Axelson, A. et al. Long-term distress after radical prostatectomy versus watchful waiting in prostate cancer: a longitudinal study from the Scandinavian Prostate Cancer Group-4 randomized clinical trial. Eur. Urol. 64, 920–928 (2013).

    Article  PubMed  Google Scholar 

  33. Sciarra, A. et al. Psychological and functional effect of different primary treatments for prostate cancer: a comparative prospective analysis. Urol. Oncol. 36, 340.e7–340.e21 (2018).

    Article  Google Scholar 

  34. Moyer, V. A. Screening for prostate cancer: US preventive services task force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    Article  PubMed  Google Scholar 

  35. Barocas, D. A. et al. Effect of the USPSTF grade D recommendation against screening for prostate cancer on incident prostate cancer diagnoses in the United States. J. Urol. 194, 1587–1593 (2015).

    Article  PubMed  Google Scholar 

  36. Gaylis, F. D. et al. Change in prostate cancer presentation coinciding with USPSTF screening recommendations at a community-based urology practice. Urol. Oncol. 35, 663.e1–663.e7 (2017).

    Article  Google Scholar 

  37. Banerji, J. S. et al. Prostate needle biopsy outcomes in the era of the US Preventive Services Task Force recommendation against prostate specific antigen based screening. J. Urol. 195, 66–73 (2016).

    Article  PubMed  Google Scholar 

  38. Kim, S. P. et al. A national survey of radiation oncologists and urologists on recommendations of prostate-specific antigen screening for prostate cancer. BJU Int. 113, E106–E111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. US Preventive Services Task Force et al. Screening for prostate cancer: US preventive services task force recommendation statement. JAMA 319, 1901–1913 (2018).

    Article  Google Scholar 

  40. Cooperberg, M. R. & Carroll, P. R. Trends in management for patients with localized prostate cancer, 1990–2013. JAMA 314, 80–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Engers, R. Reproducibility and reliability of tumor grading in urological neoplasms. World J. Urol. 25, 595–605 (2007).

    Article  PubMed  Google Scholar 

  42. Allsbrook, W. C. Jr et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum. Pathol. 32, 81–88 (2001).

    Article  PubMed  Google Scholar 

  43. Allsbrook, W. C. Jr et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Hum. Pathol. 32, 74–80 (2001).

    Article  PubMed  Google Scholar 

  44. Gleason, D. F. & Mellinger, G. T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111, 58–64 (1974).

    Article  CAS  PubMed  Google Scholar 

  45. Egevad, L. et al. Utility of Pathology Imagebase for standardisation of prostate cancer grading. Histopathology 73, 8–18 (2018).

    Article  PubMed  Google Scholar 

  46. Lucas, M. et al. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch. 475, 77–83 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Onur, R., Littrup, P. J., Pontes, J. E. & Bianco, F. J. Jr. Contemporary impact of transrectal ultrasound lesions for prostate cancer detection. J. Urol. 172, 512–514 (2004).

    Article  PubMed  Google Scholar 

  48. Moldovan, P. C. et al. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur. Urol. 72, 250–266 (2017).

    Article  PubMed  Google Scholar 

  49. Drost, F. J. H. et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Sys. Rev. 4, CD012663 (2019).

    Google Scholar 

  50. Valerio, M. et al. Detection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic review. Eur. Urol. 68, 8–19 (2015).

    Article  PubMed  Google Scholar 

  51. Faria, R. et al. Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the Prostate MR Imaging Study (PROMIS). Eur. Urol. 73, 23–30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. de Rooij, M. et al. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur. Urol. 66, 430–436 (2014).

    Article  PubMed  Google Scholar 

  53. Cerantola, Y. et al. Cost-effectiveness of multiparametric magnetic resonance imaging and targeted biopsy in diagnosing prostate cancer. Urol. Oncol. 34, 119.e1–119.e9 (2016).

    Article  Google Scholar 

  54. Hutchinson, R. C., Costa, D. N. & Lotan, Y. The economic effect of using magnetic resonance imaging and magnetic resonance ultrasound fusion biopsy for prostate cancer diagnosis. Urol. Oncol. 34, 296–302 (2016).

    Article  PubMed  Google Scholar 

  55. Pahwa, S. et al. Cost-effectiveness of MR imaging-guided strategies for detection of prostate cancer in biopsy-naive men. Radiology 285, 157–166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ouzzane, A. et al. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology 78, 1356–1362 (2011).

    Article  PubMed  Google Scholar 

  57. Pinto, P. A. et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J. Urol. 186, 1281–1285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Woodrum, D. A., Gorny, K. R., Greenwood, B. & Mynderse, L. A. MRI-guided prostate biopsy of native and recurrent prostate cancer. Semin. Intervent. Radiol. 33, 196–205 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Beyersdorff, D. et al. MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 234, 576–581 (2005).

    Article  PubMed  Google Scholar 

  60. Tilak, G. et al. 3T MR-guided in-bore transperineal prostate biopsy: a comparison of robotic and manual needle-guidance templates. J. Magn. Reson. Imaging 42, 63–71 (2015).

    Article  PubMed  Google Scholar 

  61. Wegelin, O. et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur. Urol. 71, 517–531 (2017).

    Article  PubMed  Google Scholar 

  62. Puech, P. et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US–MR fusion guidance versus systematic biopsy — prospective multicenter study. Radiology 268, 461–469 (2013).

    Article  PubMed  Google Scholar 

  63. Wysock, J. S. et al. A prospective, blinded comparison of magnetic resonance (MR) imaging–ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur. Urol. 66, 343–351 (2014).

    Article  PubMed  Google Scholar 

  64. Monda, S. M. et al. Cognitive versus software fusion for MRI-targeted biopsy: experience before and after implementation of fusion. Urology 119, 115–120 (2018).

    Article  PubMed  Google Scholar 

  65. Hamid, S. et al. The SmartTarget biopsy trial: a prospective, within-person randomised, blinded trial comparing the accuracy of visual-registration and magnetic resonance imaging/ultrasound image-fusion targeted biopsies for prostate cancer risk stratification. Eur. Urol. 75, 733–740 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Elkhoury, F. F. et al. Comparison of targeted vs systematic prostate biopsy in men who are biopsy naive: the prospective assessment of image registration in the diagnosis of prostate cancer (PAIREDCAP) study. JAMA Surg. 154, 811–818 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Simmons, L. A. et al. Accuracy of transperineal targeted prostate biopsies, visual estimation and image fusion in men needing repeat biopsy in the picture trial. J. Urol. 200, 1227–1234 (2018).

    Article  PubMed  Google Scholar 

  68. Meng, X. et al. The institutional learning curve of magnetic resonance imaging-ultrasound fusion targeted prostate biopsy: temporal improvements in cancer detection in 4 years. J. Urol. 200, 1022–1029 (2018).

    Article  PubMed  Google Scholar 

  69. Miah, S. et al. A prospective analysis of robotic targeted MRI-US fusion prostate biopsy using the centroid targeting approach. J. Robot. Surg. 14, 69–74 (2020).

    Article  PubMed  Google Scholar 

  70. Giganti, F. et al. The natural history of prostate cancer on MRI: lessons from an active surveillance cohort. Prostate Cancer Prostatic Dis. 21, 556–563 (2018).

    Article  PubMed  Google Scholar 

  71. Feutren, T. & Herrera, F. G. Prostate irradiation with focal dose escalation to the intraprostatic dominant nodule: a systematic review. Prostate Int. 6, 75–87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bass, E. J. & Ahmed, H. U. Focal therapy in prostate cancer: a review of seven common controversies. Cancer Treat. Rev. 51, 27–34 (2016).

    Article  PubMed  Google Scholar 

  73. Brembilla, G. et al. Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection. Eur. Radiol. 28, 1969–1976 (2018).

    Article  PubMed  Google Scholar 

  74. Kozikowski, M. et al. 3.0-T multiparametric magnetic resonance imaging modifies the template of endoscopic, conventional radical prostatectomy in all cancer risk categories. Arch. Med. Sci. 14, 1387–1393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kukreja, J. B. et al. Impact of preoperative prostate magnetic resonance imaging on the surgical management of high-risk prostate cancer. Prostate Cancer Prostatic Dis. 23, 172–178 (2020).

    Article  CAS  Google Scholar 

  76. McClure, T. D. et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 262, 874–883 (2012).

    Article  PubMed  Google Scholar 

  77. Mungovan, S. F. et al. Preoperative membranous urethral length measurement and continence recovery following radical prostatectomy: a systematic review and meta-analysis. Eur. Urol. 71, 368–378 (2017).

    Article  PubMed  Google Scholar 

  78. Borghesi, M. et al. Complications after systematic, random, and image-guided prostate biopsy. Eur. Urol. 71, 353–365 (2017).

    Article  PubMed  Google Scholar 

  79. Altok, M. et al. Cost and efficacy comparison of five prostate biopsy modalities: a platform for integrating cost into novel-platform comparative research. Prostate Cancer Prostatic Dis. 21, 524–532 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Bass, E. et al. Magnetic resonance imaging targeted transperineal prostate biopsy: a local anaesthetic approach. Prostate Cancer Prostatic Dis. 20, 311–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Hendriks, R., Van Oort, I. & Schalken, J. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis. 20, 12–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Russo, G. I. et al. A systematic review and meta-analysis of the diagnostic accuracy of prostate health index and 4-kallikrein panel score in predicting overall and high-grade prostate cancer. Clin. Genitourin. Cancer 15, 429–439.e1 (2017).

    Article  PubMed  Google Scholar 

  83. Braun, K., Sjoberg, D. D., Vickers, A. J., Lilja, H. & Bjartell, A. S. A four-kallikrein panel predicts high-grade cancer on biopsy: independent validation in a community cohort. Eur. Urol. 69, 505–511 (2016).

    Article  PubMed  Google Scholar 

  84. Bryant, R. J. et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study. J. Natl Cancer Inst. 107, djv095 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. De La Calle, C. et al. Multicenter evaluation of the prostate health index to detect aggressive prostate cancer in biopsy naive men. J. Urol. 194, 65–72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kim, E. H. et al. Detection of high grade prostate cancer among PLCO participants using a prespecified 4-kallikrein marker panel. J. Urol. 197, 1041–1047 (2017).

    Article  PubMed  Google Scholar 

  87. Nordström, T. et al. Comparison between the four-kallikrein panel and prostate health index for predicting prostate cancer. Eur. Urol. 68, 139–146 (2015).

    Article  PubMed  CAS  Google Scholar 

  88. Grönberg, H. et al. Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol. 16, 1667–1676 (2015).

    Article  PubMed  Google Scholar 

  89. Grönberg, H. et al. Prostate cancer diagnostics using a combination of the Stockholm3 blood test and multiparametric magnetic resonance imaging. Eur. Urol. 74, 722–728 (2018).

    Article  PubMed  Google Scholar 

  90. Möller, A. et al. The Stockholm3 blood-test predicts clinically-significant cancer on biopsy: independent validation in a multi-center community cohort. Prostate Cancer Prostatic Dis. 22, 137–142 (2019).

    Article  PubMed  Google Scholar 

  91. Steuber, T. et al. Thrombospondin 1 and cathepsin D improve prostate cancer diagnosis by avoiding potentially unnecessary prostate biopsies. BJU Int. 123, 826–833 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. McKiernan, J. et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2, 882–889 (2016).

    Article  PubMed  Google Scholar 

  93. McKiernan, J. et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/ml at initial biopsy. Eur. Urol. 74, 731–738 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Van Neste, L. et al. Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur. Urol. 70, 740–748 (2016).

    Article  PubMed  CAS  Google Scholar 

  95. Govers, T. M. et al. Cost-effectiveness of SelectMDx for prostate cancer in four European countries: a comparative modeling study. Prostate Cancer Prostatic Dis. 22, 101–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Tomlins, S. A. et al. Urine TMPRSS2: ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70, 45–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Crawford, E. D. et al. Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J. Urol. 188, 1726–1731 (2012).

    Article  PubMed  Google Scholar 

  98. Gittelman, M. C. et al. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J. Urol. 190, 64–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Tombal, B. et al. Clinical judgment versus biomarker prostate cancer gene 3: which is best when determining the need for repeat prostate biopsy? Urology 81, 998–1004 (2013).

    Article  PubMed  Google Scholar 

  100. Malavaud, B. et al. Impact of adoption of a decision algorithm including PCA3 for repeat biopsy on the costs for prostate cancer diagnosis in France. J. Med. Econ. 16, 358–363 (2013).

    Article  PubMed  Google Scholar 

  101. de la Taille, A. et al. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J. Urol. 185, 2119–2125 (2011).

    Article  PubMed  Google Scholar 

  102. Haese, A. et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur. Urol. 54, 1081–1088 (2008).

    Article  PubMed  Google Scholar 

  103. Ruffion, A. et al. PCA3 and PCA3-based nomograms improve diagnostic accuracy in patients undergoing first prostate biopsy. Int. J. Mol. Sci. 14, 17767–17780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nicholson, A. et al. The clinical effectiveness and cost-effectiveness of the PROGENSA® prostate cancer antigen 3 assay and the Prostate Health Index in the diagnosis of prostate cancer: a systematic review and economic evaluation. Health Technol. Assess. 19, 1–191 (2015).

    Article  Google Scholar 

  105. Kim, S. P. et al. Physician attitudes about genetic testing for localized prostate cancer: a national survey of radiation oncologists and urologists. Urol. Oncol. 36, 501.e15–501.e21 (2018).

    Article  Google Scholar 

  106. Carroll, P. H. & Mohler, J. L. NCCN guidelines updates: prostate cancer and prostate cancer early detection. J. Natl Compr. Cancer Netw. 16, 620–623 (2018).

    Article  Google Scholar 

  107. Mottet, N. et al. EAU-ESTRO-ESUR-SIOG guidelines on prostate cancer. Uroweb https://uroweb.org/wp-content/uploads/EAU-ESUR-ESTRO-SIOG-Guidelines-on-Prostate-Cancer-large-text-V2.pdf (2018).

  108. National Institute for Health and Care Excellence (NICE). Prostate cancer: diagnosis and management. NICE https://www.nice.org.uk/guidance/ng131 (2019).

  109. Busetto, G. M. et al. Prostate cancer gene 3 and multiparametric magnetic resonance can reduce unnecessary biopsies: decision curve analysis to evaluate predictive models. Urology 82, 1355–1362 (2013).

    Article  PubMed  Google Scholar 

  110. Gnanapragasam, V. J. et al. The Prostate Health Index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population. Sci. Rep. 6, 35364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Druskin, S. C. et al. Combining Prostate Health Index density, magnetic resonance imaging and prior negative biopsy status to improve the detection of clinically significant prostate cancer. BJU Int. 121, 619–626 (2018).

    Article  PubMed  Google Scholar 

  112. Hendriks, R. J. et al. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection. Prostate 77, 1401–1407 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Dell’Oglio, P. et al. Impact of multiparametric MRI and MRI-targeted biopsy on pre-therapeutic risk assessment in prostate cancer patients candidate for radical prostatectomy. World J. Urol. 37, 221–234 (2019).

    Article  PubMed  Google Scholar 

  114. Ploussard, G. et al. Decreased accuracy of the prostate cancer EAU risk group classification in the era of imaging-guided diagnostic pathway: proposal for a new classification based on MRI-targeted biopsies and early oncologic outcomes after surgery. World J. Urol. https://doi.org/10.1007/s00345-019-03053-6 (2019).

    Article  PubMed  Google Scholar 

  115. Corfield, J., Perera, M., Bolton, D. & Lawrentschuk, N. 68 Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J. Urol. 36, 519–527 (2018).

    Article  PubMed  Google Scholar 

  116. Weinreb, J. C. et al. PI-RADS prostate imaging reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016).

    Article  PubMed  Google Scholar 

  117. Turkbey, B. et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76, 340–351 (2019).

    Article  PubMed  Google Scholar 

  118. Gaziev, G. et al. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int. 117, 80–86 (2016).

    Article  PubMed  Google Scholar 

  119. Rosenkrantz, A. B. et al. The learning curve in prostate MRI interpretation: self-directed learning versus continual reader feedback. Am. J. Roentgenol. 208, W92–W100 (2017).

    Article  Google Scholar 

  120. Le, M. H. et al. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys. Med. Biol. 62, 6497–6514 (2017).

    Article  PubMed  Google Scholar 

  121. Wang, J. et al. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur. Radiol. 27, 4082–4090 (2017).

    Article  PubMed  Google Scholar 

  122. Zhong, X. et al. Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdom. Radiol. 44, 2030–2039 (2019).

    Article  Google Scholar 

  123. Kuhl, C. K. et al. Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology 285, 493–505 (2017).

    Article  PubMed  Google Scholar 

  124. Kang, Z. et al. Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: a systematic review and meta-analysis. Am. J. Roentgenol. 212, 357–365 (2019).

    Article  Google Scholar 

  125. Alabousi, M. et al. Biparametric vs multiparametric prostate magnetic resonance imaging for the detection of prostate cancer in treatment-naïve patients: a diagnostic test accuracy systematic review and meta-analysis. BJU Int. 124, 209–220 (2019).

    Article  PubMed  Google Scholar 

  126. Porter, K. K. et al. Financial implications of biparametric prostate MRI. Prostate Cancer Prostatic Dis. 23, 88–93 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Gatti, M. et al. Prostate cancer detection with biparametric magnetic resonance imaging (bpMRI) by readers with different experience: performance and comparison with multiparametric (mpMRI). Abdom. Radiol. 44, 1883–1893 (2019).

    Article  Google Scholar 

  128. Grey, A. & Ahmed, H. U. Multiparametric ultrasound in the diagnosis of prostate cancer. Curr. Opin. Urol. 26, 114–119 (2016).

    Article  PubMed  Google Scholar 

  129. Mannaerts, C. K. et al. Multiparametric ultrasound for prostate cancer detection and localization: correlation of B-mode, shearwave elastography and contrast-enhanced ultrasound with radical prostatectomy specimens. J. Urol. 202, 1166–1173 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research of H.U.A. is supported by core funding from the UK National Institute of Health Research, the Imperial Biomedical Research Centre, the Wellcome Trust and Prostate Cancer UK.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of manuscript preparation.

Corresponding author

Correspondence to Hashim U. Ahmed.

Ethics declarations

Competing interests

H.U.A. receives funding from Sophiris Bio Inc., SonaCare Medical and Trod Medical for trials in prostate cancer, is a paid medical consultant of Sophiris Bio Inc. and SonaCare Medical, is a proctor for high-intensity-focused ultrasound and cryotherapy of the prostate, and has received honoraria for training other surgeons in this procedure. None of the funding sources had any role or input into the collection, management, analysis or interpretation of the studies discussed, or in the preparation, review or approval of the manuscript. D.J.L. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks H. Grönberg, P. Pinto and A. Vickers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomas, D.J., Ahmed, H.U. All change in the prostate cancer diagnostic pathway. Nat Rev Clin Oncol 17, 372–381 (2020). https://doi.org/10.1038/s41571-020-0332-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0332-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer