Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Creating molecules that modulate immune responses

Abstract

During evolution, humans developed innate and adaptive immune systems to survive infection by pathogens. The immune system needs to be finely balanced, as an overactive immune system can result in autoimmunity, allergy and inflammatory disorders, whereas over-attenuation can result in infections and cancer. Here, we describe how the immune system can be modulated using chemical approaches, with a focus on the chemical modification and application of antibodies, one of the major components of the immune defence system. Progress includes the development of antibody–drug conjugates and imaging reagents based on antibody fragments and nanobodies, and their clinical and preclinical applications for the treatment of cancer and autoimmune disease are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline showing key developments in immunology that have used chemistry3,11,28,35,41,45,129,130,131,132,133,134,135,136,137,138,139.
Fig. 2: Major systems that control the activity of T cells.
Fig. 3: Overview of the mode of action of antibody–drug conjugates.

Similar content being viewed by others

References

  1. Ehrlich, P. Beiträge zur Kenntniss der Anilinfärbungen und ihrer Verwendung in der mikroskopischen Technik. Arch. Mikrosk. Anat. 13, 263–277 (1877).

    Article  Google Scholar 

  2. Ehrlich, P. Address in Pathology, ON CHEMIOTHERAPY: delivered before the Seventeenth International Congress of Medicine. Br. Med. J. 2, 353–359 (1913).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bosch, F. & Rosich, L. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology 82, 171–179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parascandola, J. The History of Salvarsan (Arsphenamine). eLS https://doi.org/10.1038/npg.els.0003622 (2001).

    Article  Google Scholar 

  5. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Casanova, J.-L. Adaptive immunity by convergent evolution. Nat. Rev. Immunol. 18, 294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Krangel, M. S. Mechanics of T cell receptor gene rearrangement. Curr. Opin. Immunol. 21, 133–139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farber, D. L., Netea, M. G., Radbruch, A., Rajewsky, K. & Zinkernagel, R. M. Immunological memory: lessons from the past and a look to the future. Nat. Rev. Immunol. 16, 124 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Borel, J. F., Feurer, C., Gubler, H. U. & Stahelin, H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Act. 6, 468–475 (1976).

    Article  CAS  Google Scholar 

  12. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Calne, R. Y. et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet 2, 1033–1036 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antbiot. 40, 1249–1255 (1987).

    Article  CAS  Google Scholar 

  15. Kunz, J. & Hall, M. N. Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. Trends Biochem. Sci. 18, 334–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Klintmalm, G. A review of FK506: a new immunosuppressant agent for the prevention and rescue of graft rejection. Transplant. Rev. 8, 53–63 (1994).

    Article  Google Scholar 

  17. Ho, S. et al. The mechanism of action of cyclosporin A and FK506. Clin. Immunol. Immunopathol. 80, S40–45 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Durnian, J. M., Stewart, R. M., Tatham, R., Batterbury, M. & Kaye, S. B. Cyclosporin-A associated malignancy. Clin. Ophthalmol. 1, 421–430 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guba, M., Graeb, C., Jauch, K. W. & Geissler, E. K. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation 77, 1777–1782 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Sedger, L. M. & McDermott, M. F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev. 25, 453–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Malottki, K. et al. Adalimumab, etanercept, infliximab, rituximab and abatacept for the treatment of rheumatoid arthritis after the failure of a tumour necrosis factor inhibitor: a systematic review and economic evaluation. Health Technol. Assess. 15, 1–278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wilhelm, S. M., McKenney, K. A., Rivait, K. N. & Kale-Pradhan, P. B. A review of infliximab use in ulcerative colitis. Clin. Ther. 30, 223–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Han, C. et al. The impact of infliximab treatment on quality of life in patients with inflammatory rheumatic diseases. Arthritis Res. Ther. 9, R103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knight, D. M. et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immunol. 30, 1443–1453 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Medler, T. R., Cotechini, T. & Coussens, L. M. Immune response to cancer therapy: mounting an effective antitumor response and mechanisms of resistance. Trends Cancer 1, 66–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res. 262, 3–11 (1991).

    Google Scholar 

  29. Rosenberg, S. A. Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat. Rep. 68, 233–255 (1984).

    CAS  PubMed  Google Scholar 

  30. Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naidoo, J. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26, 2375–2391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Callahan, M. K. & Wolchok, J. D. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J. Leukocyte Biol. 94, 41–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heinzerling, L. & Goldinger, S. M. A review of serious adverse effects under treatment with checkpoint inhibitors. Curr. Opin. Oncol. 29, 136–144 (2017).

    CAS  PubMed  Google Scholar 

  37. Nossal, G. J. & Lederberg, J. Antibody production by single cells. Nature 181, 1419–1420 (1958).

    Article  CAS  PubMed  Google Scholar 

  38. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J. & Mumey, B. Antigen–antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures. Biochim. Biophys. Acta 1824, 520–532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L. & Goldberg, M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77, 305–319 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  42. Nadler, L. M. et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 40, 3147–3154 (1980).

    CAS  PubMed  Google Scholar 

  43. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Teo, E. C., Chew, Y. & Phipps, C. A review of monoclonal antibody therapies in lymphoma. Crit. Rev. Oncol. Hematol. 97, 72–84 (2016).

    Article  PubMed  Google Scholar 

  47. Yan, L., Hsu, K. & Beckman, R. A. Antibody-based therapy for solid tumors. Cancer J. 14, 178–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Rosman, Z., Shoenfeld, Y. & Zandman-Goddard, G. Biologic therapy for autoimmune diseases: an update. BMC Med. 11, 88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jacob Sh,T. & Fletcher, T. E. Trial of ZMapp for Ebola virus infection. N. Engl. J. Med. 376, 700 (2017).

    Article  PubMed  Google Scholar 

  50. Agarwal, P. & Bertozzi, C. R. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug.Chem. 26, 176–192 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  51. Irani, V. et al. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol. Immunol. 67, 171–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Mantis, N. J., Rol, N. & Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simister, N. E. Placental transport of immunoglobulin G. Vaccine 21, 3365–3369 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Mankarious, S. et al. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J. Lab. Clin. Med. 112, 634–640 (1988).

    CAS  PubMed  Google Scholar 

  55. Liu, J. K. H. The history of monoclonal antibody development – Progress, remaining challenges and future innovations. Ann. Med. Surg. 3, 113–116 (2014).

    Article  Google Scholar 

  56. Fanale, M. A. & Younes, A. Monoclonal antibodies in the treatment of non-Hodgkin’s lymphoma. Drugs 67, 333–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Christian, B. A. & Lin, T. S. Antibody therapy for CLL. Semin. Hematol. 45, 95–103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinelli, E., De Palma, R., Orditura, M., De Vita, F. & Ciardiello, F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol. 158, 1–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakai, K., Hung, M.-C. & Yamaguchi, H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am. J. Cancer. Res. 6, 1609–1623 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Killock, D. Leveraging ADCC to enhance anti-HER2 therapy. Nat. Rev. Clin. Oncol. 14, 200 (2017).

    PubMed  Google Scholar 

  61. Cameron, F., Whiteside, G. & Perry, C. Ipilimumab: first global approval. Drugs 71, 1093–1104 (2011).

    Article  PubMed  Google Scholar 

  62. Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seidel, J. A., Otsuka, A. & Kabashima, K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol. 8, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Evans, J. B. & Syed, B. A. Next-generation antibodies. Nat. Rev. Drug Discov. 13, 413–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Trail, P. A. et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261, 212–215 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Anderl, J., Faulstich, H., Hechler, T. & Kulke, M. Antibody-drug conjugate payloads. Methods Mol. Biol. 1045, 51–70 (2013).

    Article  PubMed  Google Scholar 

  67. van der Lee, M. M. C. et al. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol. Cancer Ther. 14, 692–703 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Erickson, H. K. et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 66, 4426–4433 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kellogg, B. A. et al. Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem. 22, 717–727 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. McDonagh, C. F. et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol. Cancer Ther. 11, 582–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. de Goeij, B. E. C. G. et al. Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63. Mol. Cancer Ther. 15, 2688–2697 (2016).

    Article  PubMed  Google Scholar 

  73. Mitsunaga, M. et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med 17, 1685–1691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Matsumura, Y. Cancer stromal targeting (CAST) therapy. Adv. Drug Delivery Rev. 64, 710–719 (2012).

    Article  CAS  Google Scholar 

  76. Polson, A. G. et al. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res. 69, 2358–2364 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Gébleux, R., Stringhini, M., Casanova, R., Soltermann, A. & Neri, D. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Intl. J. Cancer 140, 1670–1679 (2017).

    Article  CAS  Google Scholar 

  78. Rossin, R. et al. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun. 9, 1484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rossin, R. et al. Triggered drug release from an antibody-drug conjugate using fast “click-to-release” chemistry in mice. Bioconjug. Chem. 27, 1697–1706 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Holliger, P., Prospero, T. & Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl Acad. Sci. USA 90, 6444–6448 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Mullard, A. FDA approves first bispecific. Nat. Rev. Drug Discov. 14, 7 (2014).

    Article  CAS  Google Scholar 

  83. Walseng, E. et al. Chemically programmed bispecific antibodies in diabody format. J. Biol. Chem. 291, 19661–19673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Porter, R. R. The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem. J. 73, 119–126 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nisonoff, A., Wissler, F. C., Lipman, L. N. & Woernley, D. L. Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch. Biochem. Biophys. 89, 230–244 (1960).

    Article  CAS  PubMed  Google Scholar 

  86. Parham, P., Androlewicz, M. J., Brodsky, F. M., Holmes, N. J. & Ways, J. P. Monoclonal antibodies: Purification, fragmentation and application to structural and functional studies of class I MHC antigens. J. Immunol. Methods 53, 133–173 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. Huston, J. S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nelson, A. L. Antibody fragments: hope and hype. mAbs 2, 77–83 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Testa, L. et al. Pexelizumab in ischemic heart disease: a systematic review and meta-analysis on 15,196 patients. J. Thorac. Cardiovasc. Surg. 136, 884–893 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Van Audenhove, I. & Gettemans, J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. eBioMedicine 8, 40–48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ta, D. T. et al. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Protein Eng. Des. Sel. 28, 351–363 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Rashidian, M. et al. Use of 18F-2-fluorodeoxyglucose to label antibody fragments for immuno-positron emission tomography of pancreatic cancer. ACS Cent. Sci. 1, 142–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fang, T. et al. Structurally defined αMHC-II nanobody-drug conjugates: a therapeutic and imaging system for B-cell lymphoma. Angew. Chem. Int. Ed. Engl. 55, 2416–2420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rashidian, M. et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J. Exp. Med. 214, 2243–2255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vincke, C. et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284, 3273–3284 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02553317 (2015).

  98. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02287922 (2014).

  99. Koide, A., Bailey, C. W., Huang, X. & Koide, S. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Beste, G., Schmidt, F. S., Stibora, T. & Skerra, A. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl Acad. Sci. USA 96, 1898–1903 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P. & Plückthun, A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Nord, K. et al. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15, 772 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Nord, K., Nilsson, J., Nilsson, B., Uhlén, M. & Nygren, P.-Å. A combinatorial library of an α-helical bacterial receptor domain. Protein Eng. Des. Sel. 8, 601–608 (1995).

    Article  CAS  Google Scholar 

  104. Lorey, S. et al. Novel ubiquitin-derived high affinity binding proteins with tumor targeting properties. J. Biol. Chem. 289, 8493–8507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Leung, I., Jarvik, N. & Sidhu, S. S. A. Highly diverse and functional naïve ubiquitin variant library for generation of intracellular affinity reagents. J. Mol. Biol. 429, 115–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Li, D.-L. et al. Multifunctional superparamagnetic nanoparticles conjugated with fluorescein-labeled designed ankyrin repeat protein as an efficient HER2-targeted probe in breast cancer. Biomaterials 147, 86–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Ståhl, S. et al. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol. 35, 691–712 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03325621 (2017).

  109. Mross, K. et al. First-in-human phase i study of PRS-050 (Angiocal), an anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLOS ONE 8, e83232 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03330561 (2017).

  111. Kelley, J., de Bono, B. & Trowsdale, J. IRIS: A database surveying known human immune system genes. Genomics 85, 503–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Le Bourhis, L. et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLOS Pathog. 9, e1003681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oosenbrug, T., van de Graaff, M. J., Ressing, M. E. & van Kasteren, S. I. Chemical tools for studying TLR signaling dynamics. Cell Chem. Biol. 24, 801–812 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Mancini, R. J., Stutts, L., Ryu, K. A., Tom, J. K. & Esser-Kahn, A. P. Directing the immune system with chemical compounds. ACS Chem. Biol. 9, 1075–1085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Khan, S. et al. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J. Biol. Chem. 282, 21145–21159 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. McDonald, D. M., Byrne, S. N. & Payne, R. J. Synthetic self-adjuvanting glycopeptide cancer vaccines. Front. Chem. 3, 60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hos, B. J., Tondini, E., van Kasteren, S. I. & Ossendorp, F. Approaches to improve chemically defined synthetic peptide vaccines. Front. Immunol. 9, 884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li, B. & Yang, R. Interaction between Yersinia pestis and the host immune system. Infect. Immun. 76, 1804–1811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gomery, K. et al. Antibody WN1 222–225 mimics Toll-like receptor 4 binding in the recognition of LPS. Proc. Natl Acad. Sci. USA 109, 20877–20882 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li, J. & Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 12, 129–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. van der Gracht, A. M. F. et al. Chemical control over T-cell activation in vivo using deprotection of trans-cyclooctene-modified epitopes. ACS Chem. Biol. https://doi.org/10.1021/acschembio.8b00155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pawlak, J. B. et al. Bioorthogonal deprotection on the dendritic cell surface for chemical control of antigen cross-presentation. Angew. Chem. Int. Ed. Engl. 54, 5628–5631 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Ignacio, B. J., Albin, T., Esser-Kahn, A. P. & Verdoes, M. TLR agonist conjugation: a chemical perspective. Bioconjug. Chem. (2018).

  124. Kummer, C., Petrich, B. G., Rose, D. M. & Ginsberg, M. H. A. Small molecule that inhibits the interaction of paxillin and α4 integrin inhibits accumulation of mononuclear leukocytes at a site of inflammation. J. Biol. Chem. 285, 9462–9469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fernandez, A. et al. Chemical modulation of in vivo macrophage function with subpopulation-specific fluorescent prodrug conjugates. ACS Cent. Sci. 3, 995–1005 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. M., V. R. et al. Click-to-release from trans-cyclooctenes: mechanistic insights and expansion of scope from established carbamate to remarkable ether cleavage. Angew. Chem. Int. Ed. Engl. https://doi.org/10.1002/Anie.201800402 (2018).

    Article  PubMed  Google Scholar 

  127. Pictet, A. & Spengler, T. Über die bildung von isochinolin-derivaten durch einwirkung von methylal auf phenyl-äthylamin, phenyl-alanin und tyrosin. Ber. Dtsch. Chem. Ges 44, 2030–2036 (1911).

    Article  CAS  Google Scholar 

  128. Ziegler, S. F. Division of labour by CD4+ T helper cells. Nat. Rev. Immunol. 16, 403 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Winau, F. & Winau, R. Emil von Behring and serum therapy. Microbes Infect. 4, 185–188 (2002).

    Article  PubMed  Google Scholar 

  130. Lindenmann, J. Origin of the terms ‘antibody’ and ‘antigen’. Scand. J. Immunol. 19, 281–285 (1984).

    Article  CAS  PubMed  Google Scholar 

  131. Burns, C. M. The history of cortisone discovery and development. Rheum. Dis. Clin. North Am. 42, 1–14 (2016).

    Article  PubMed  Google Scholar 

  132. Inbar, D., Hochman, J. & Givol, D. Localization of antibody-combining sites within the variable portions of heavy and light chains. Proc. Natl Acad. Sci. USA 69, 2659–2662 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Ortho Multicenter Transplant Study Group. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N. Engl. J. Med. 313, 337–342 (1985).

    Article  Google Scholar 

  135. Monaco, C., Nanchahal, J., Taylor, P. & Feldmann, M. Anti-TNF therapy: past, present and future. Int. Immunol. 27, 55–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Diamantis, N. & Banerji, U. Antibody-drug conjugates — an emerging class of cancer treatment. Br. J. Cancer 114, 362–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Eggermont, A. M. & Robert, C. New drugs in melanoma: it’s a whole new world. Eur. J. Cancer 47, 2150–2157 (2011).

    Article  PubMed  Google Scholar 

  139. Arabi, F., Torabi-Rahvar, M., Shariati, A., Ahmadbeigi, N. & Naderi, M. Antigenic targets of CAR T cell therapy. A retrospective view on clinical trials. Exp. Cell Res. 369, 1–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Macian, F. NFAT proteins: key regulators of T cell development and function. Nat. Rev. Immunol. 5, 472 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Vincenti, F. et al. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med. 374, 333–343 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Gravity programme Institute of Chemical Immunology and the Oncode Initiative (to J.N. and H.O.) and a European Research Council (ERC) Starting Grant to 639005 (S.I.v.K.).

Reviewer information

Nature Reviews Chemistry thanks A. Esser-Kahn and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.I.v.K., J.N. and H.O. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Sander I. van Kasteren or Huib Ovaa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody–drug conjugates

(ADCs). Constructed of an antibody covalently linked to a small-molecule drug. The conjugation renders the drug inactive, and it is released only at the site targeted by the antibody. This should result in lower background toxicity.

Antigen

A molecule that is capable of inducing an immune response.

Co-stimulation

When an antigen-presenting cell (APC) presents a peptide to a T cell, it can initiate an immune response or an immunosuppressive response. For an immune response, a second set of T cell surface markers (for example, CD80 and CD86) is activated by receptors on the APC to inform the T cell that the peptide presented is dangerous. This second signal is called co-stimulation or signal 2.

Immune checkpoints

Signals — either from T cells or APCs — that initiate an immunosuppressive response. They are often exploited by tumours to stop an antitumour immune response.

Checkpoint inhibitors

Antibodies that block the immunosuppressive response triggered by immune checkpoints. This allows an immune response against a tumour to be re-activated.

‘Click-to-release’ chemistry

A chemical deprotection strategy based on the inverse-electron-demand Diels–Alder ligation. After the initial ligation of an allylic trans-cyclooctene to a tetrazine, the intermediate pyridazine can rearrange to warrant the elimination (release) of the allylic substituent. Carbamates, as well as ethers and esters, can be deprotected under biocompatible conditions in this manner126.

Immunophilins

Peptidyl–prolyl isomerase enzymes that ensure the proper folding of target proteins by interconverting between the cis and trans bonds of target prolines.

Ipilimumab

A first-generation checkpoint inhibitor. It targets the cytotoxic T lymphocyte antigen 4 (CTLA4) receptor on T cells, which usually binds the co-stimulatory signal on APCs without activating the T cell. The exact immunomodulatory action of this antibody is not yet fully understood.

Lipocalins

Small proteins that transport small hydrophobic molecules.

Nanobodies

Truncated antibodies consisting of a single immunoglobulin domain (12–15 kDa), usually derived from camelids. Their small size makes them easier to express and gives them a shorter half-life (~20 minutes) than full-sized antibodies (>180 kDa; half-life of 5 days or more).

Bispecific antibodies

Constructs that contain two different antigen-targeting domains in a single molecule. They are made by chemical or genetic fusion of different antibodies and can be used to bring two cells into proximity.

Cytokines

Small proteins that regulate the strength and shape of the immune response via intercellular signalling in the immune system. The immune response against a virus, bacteria or helminth is characterized by different cytokines, which can suppress or activate other immune cells and are thus categorized as pro-inflammatory or immunosuppressive.

Pictet–Spengler reaction

The ring-closing reaction between a β-arylethylamine and a ketone or aldehyde to yield a spirocyclic product127.

Single-chain variable fragments

Constructs created by linking genetic material encoding the variable fragment of one antibody heavy chain to the genetic code for the variable fragment of a light chain. They are the smallest fragments of a two-chain antibody that can be constructed.

T cells

Cells that play an essential role in the cellular immune response by recognizing peptides displayed on major histocompatibility proteins (MHCs) of other cells. T cells can be distinguished from other immune cells by the presence of a T cell receptor on their surface. Some T cells kill the cell they recognize, whereas others help the cell presenting the peptide to kill an intracellular pathogen128.

Therapeutic window

The concentration range in which a drug can be used. At the lower end, the drug is not effective, and at the top end, the drug is too toxic to use. A small therapeutic window reduces the usefulness of a drug.

Transcytosis

A form of vesicular transport that carries macromolecules across the interior of the cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Kasteren, S.I., Neefjes, J. & Ovaa, H. Creating molecules that modulate immune responses. Nat Rev Chem 2, 184–193 (2018). https://doi.org/10.1038/s41570-018-0023-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0023-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing