Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac optogenetics: a decade of enlightenment

Abstract

The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space–time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.

Key points

  • Cardiac optogenetics leverages genetically encoded optical sensors and actuators to empower basic and translational research, as evidenced by an impressive growth of published reports over the past decade.

  • Immediate translational opportunities reside in all-optical platforms that are inherently high-throughput, offering rapid testing and discovery of new drugs and therapies with the use of patient-derived cells for personalized medicine and myocardial regeneration.

  • Optogenetics offers technical innovations for cardiac rhythm control in patients and long-term opportunities for clinical translation for ultra-low-energy rhythm control, precise autonomic neuromodulation and painless defibrillation, which are based on the cell-specificity and space–time resolution of optogenetics.

  • Challenges in translating cardiac optogenetics to the clinic are mainly linked to safe opsin delivery to the heart, cell-specific expression and engaging the opsins with light deep within the tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of optical tools applied to the heart.
Fig. 2: Advantages of all-optical electrophysiology and the optogenetic toolkit.
Fig. 3: Near-term translation for high-throughput drug screening and cardiotoxicity testing.
Fig. 4: Near-term translation to enhance stem cell technology and personalized medicine.
Fig. 5: Long-term translation of cardiac optogenetics for rhythm control.
Fig. 6: Long-term translation of cardiac optogenetics for wave control and feedback control.
Fig. 7: Long-term translation of cardiac optogenetics for cell-specific control.

Similar content being viewed by others

References

  1. Arrenberg, A. B., Stainier, D. Y., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Hofmann, B. et al. Light induced stimulation and delay of cardiac activity. Lab Chip 10, 2588–2596 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Jia, Z. et al. Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol. 4, 753–760 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salama, G. & Morad, M. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science 48, 485–487 (1976).

    Article  Google Scholar 

  6. Morad, M. & Salama, G. Optical probes of membrane potential in heart muscle. J. Physiol. 292, 267–295 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tallini, Y. N. et al. Imaging cellular signals in the heart in vivo. Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc. Natl Acad. Sci. USA 103, 4753–4758 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roell, W. et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450, 819–824 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Chi, N. C. et al. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol. 6, e109 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagel, G. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395–2398 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Miesenbock, G. The optogenetic catechism. Science 326, 395–399 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Zemelman, B. V., Lee, G. A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically charged neurons. Neuron 33, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Zemelman, B. V., Nesnas, N., Lee, G. A. & Miesenbock, G. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl Acad. Sci. USA 100, 1352–1357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abilez, O. J. Cardiac optogenetics. Annu. Int. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 1386–1389 (2012).

    Google Scholar 

  20. Entcheva, E. Cardiac optogenetics. Am. J. Physiol. Heart. Circ. Physiol. 304, H1179–H1191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ambrosi, C. M., Klimas, A., Yu, J. & Entcheva, E. Cardiac applications of optogenetics. Prog. Biophys. Mol. Biol. 115, 294–304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ambrosi, C. M. & Entcheva, E. Optogenetics’ promise: pacing and cardioversion by light? Future Cardiol. 10, 1–4 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Boyle, P. M., Entcheva, E. & Trayanova, N. A. See the light: can optogenetics restore healthy heartbeats? And, if it can, is it really worth the effort? Expert Rev. Cardiovasc. Ther. 12, 17–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Kaestner, L. et al. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ. Res. 114, 1623–1639 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Bruegmann, T. & Sasse, P. Optogenetic cardiac pacemakers: science or fiction? Trends Cardiovasc. Med. 25, 82–83 (2015).

    Article  PubMed  Google Scholar 

  26. Boyle, P. M., Karathanos, T. V. & Trayanova, N. A. “Beauty is a light in the heart”: the transformative potential of optogenetics for clinical applications in cardiovascular medicine. Trends Cardiovasc. Med. 25, 73–81 (2015).

    Article  PubMed  Google Scholar 

  27. Boyle, P. M., Karathanos, T. V., Entcheva, E. & Trayanova, N. A. Computational modeling of cardiac optogenetics: methodology overview & review of findings from simulations. Comput. Biol. Med. 65, 200–208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Karathanos, T. V., Boyle, P. M. & Trayanova, N. A. Light-based approaches to cardiac arrhythmia research: from basic science to translational applications. Clin. Med. Insights Cardiol. 10, 47–60 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Entcheva, E. & Bub, G. All-optical control of cardiac excitation: combined high-resolution optogenetic actuation and optical mapping. J. Physiol. 594, 2503–2510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richter, C., Christoph, J., Lehnart, S. E. & Luther, S. Optogenetic light crafting tools for the control of cardiac arrhythmias. Methods Mol. Biol. 1408, 293–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Montgomery, K. L., Iyer, S. M., Christensen, A. J., Deisseroth, K. & Delp, S. L. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl. Med. 8, 337rv5 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Pianca, N., Zaglia, T. & Mongillo, M. Will cardiac optogenetics find the way through the obscure angles of heart physiology? Biochem. Biophys. Res. Commun. 482, 515–523 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, H. & Cohen, A. E. Optogenetic approaches to drug discovery in neuroscience and beyond. Trends Biotechnol. 35, 625–639 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, Y., Zou, P. & Cohen, A. E. Voltage imaging with genetically encoded indicators. Curr. Opin. Chem. Biol. 39, 1–10 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gepstein, L. & Gruber, A. Optogenetic neuromodulation of the heart. J. Am. Coll. Cardiol. 70, 2791–2794 (2017).

    Article  PubMed  Google Scholar 

  36. Crocini, C., Ferrantini, C., Pavone, F. S. & Sacconi, L. Optogenetics gets to the heart: a guiding light beyond defibrillation. Prog. Biophys. Mol. Biol. 130, 132–139 (2017).

    Article  PubMed  Google Scholar 

  37. Koopman, C. D., Zimmermann, W. H., Knopfel, T. & de Boer, T. P. Cardiac optogenetics: using light to monitor cardiac physiology. Basic Res. Cardiol. 112, 56 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pomeroy, J. E., Nguyen, H. X., Hoffman, B. D. & Bursac, N. Genetically encoded photoactuators and photosensors for characterization and manipulation of pluripotent stem cells. Theranostics 7, 3539–3558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnston, C. M. et al. Optogenetic targeting of cardiac myocytes and non-myocytes: tools, challenges and utility. Prog. Biophys. Mol. Biol. 130, 140–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Boyle, P. M., Karathanos, T. V. & Trayanova, N. A. Cardiac optogenetics: 2018. JACC Clin. Electrophysiol. 4, 155–167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schneider-Warme, F. The power of optogenetics: potential in cardiac experimental and clinical electrophysiology. Herzschrittmacherther. Elektrophysiol. 29, 24–29 (2018).

    Article  PubMed  Google Scholar 

  42. Gruber, A., Edri, O. & Gepstein, L. Cardiac optogenetics: the next frontier. Europace 20, 1910–1918 (2018).

    PubMed  Google Scholar 

  43. Sasse, P., Funken, M., Beiert, T. & Bruegmann, T. Optogenetic termination of cardiac arrhythmia: mechanistic enlightenment and therapeutic application? Front. Physiol. 10, 675 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. O’Shea, C. et al. Cardiac optogenetics and optical mapping – overcoming spectral congestion in all-optical cardiac electrophysiology. Front. Physiol. 10, 182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ferenczi, E. A., Tan, X. & Huang, C. L.-H. Principles of optogenetic methods and their application to cardiac experimental systems. Front. Physiol. 10, 1096 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Joshi, J., Rubart, M. & Zhu, W. Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine. Front. Bioeng. Biotechnol. 7, 466 (2019).

    Article  PubMed  Google Scholar 

  47. Zaglia, T., Di Bona, A. & Mongillo, M. A light wand to untangle the myocardial cell network. Methods Protoc. 2, 34 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  48. Hussaini, S. et al. Drift and termination of spiral waves in optogenetically modified cardiac tissue at sub-threshold illumination. Preprint at https://www.biorxiv.org/content/10.1101/2020.06.12.148734v1 (2020).

  49. Richter, C. & Bruegmann, T. No light without the dark: perspectives and hindrances for translation of cardiac optogenetics. Prog. Biophys. Mol. Biol. 154, 39–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Bub, G. & Daniels, M. J. Feasibility of using adjunctive optogenetic technologies in cardiomyocyte phenotyping – from the single cell to the whole heart. Curr. Pharm. Biotechnol. 21, 752–764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moreno, A., Kowalik, G. & Kay, M. W. Optogenetic control of cardiac autonomic neurons in transgenic mice. Methods Mol. Biol. 2191, 1–13 (2020).

    Google Scholar 

  52. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Inoue, M. et al. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat. Methods 12, 64–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakao, S., Wakabayashi, S. & Nakamura, T. Y. Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1. PLoS ONE 10, 1–16 (2015).

    Article  CAS  Google Scholar 

  60. Dempsey, G. T. et al. Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. J. Pharmacol. Toxicol. Methods 81, 240–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Björk, S. et al. Evaluation of optogenetic electrophysiology tools in human stem cell-derived cardiomyocytes. Front. Physiol. 8, 884 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Klimas, A., Ortiz, G., Boggess, S. C., Miller, E. W. & Entcheva, E. Multimodal on-axis platform for all-optical electrophysiology with near-infrared probes in human stem-cell-derived cardiomyocytes. Prog. Biophys. Mol. Biol. 154, 62–70 (2020).

    Article  PubMed  Google Scholar 

  63. Wei, L., Li, W., Entcheva, E. & Li, Z. Microfluidics-enabled 96-well perfusion system for high-throughput tissue engineering and long-term all-optical electrophysiology. Lab Chip 20, 4031–4042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Song, L. et al. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators. Stem Cell Transl. Med. 4, 468–475 (2015).

    Article  Google Scholar 

  65. Streit, J. & Kleinlogel, S. Dynamic all-optical drug screening on cardiac voltage-gated ion channels. Sci. Rep. 8, 1153–1153 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lundby, A., Akemann, W. & Knopfel, T. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur. Biophys. J. 39, 1625–1635 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Lundby, A., Mutoh, H., Dimitrov, D., Akemann, W. & Knopfel, T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE 3, e2514 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jin, L. et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75, 779–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdelfattah, A. S. et al. A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J. Neurosci. 36, 2458–2472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Biendarra-Tiegs, S. M. et al. Single-cell RNA-sequencing and optical electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes reveal discordance between cardiac subtype-associated gene expression patterns and electrophysiological phenotypes. Stem Cells Dev. 28, 659–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shaheen, N. et al. Human induced pluripotent stem cell-derived cardiac cell sheets expressing genetically encoded voltage indicator for pharmacological and arrhythmia studies. Stem Cell Rep. 10, 1879–1894 (2018).

    Article  CAS  Google Scholar 

  72. Shinnawi, R. et al. Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters. Stem Cell Rep. 5, 582–596 (2015).

    Article  CAS  Google Scholar 

  73. Leyton-Mange, J. S. et al. Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor. Stem Cell Rep. 2, 163–170 (2014).

    Article  CAS  Google Scholar 

  74. Quinn, T. A. et al. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc. Natl Acad. Sci. USA 113, 14852–14857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liao, M. L. C. et al. Sensing cardiac electrical activity with a cardiac myocyte-targeted optogenetic voltage indicator. Circ. Res. 117, 401–412 (2015).

    Article  CAS  Google Scholar 

  76. Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608.e23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chamberland, S. et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. eLife 6, e25690 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Monakhov, M. V. et al. Bright near-infrared genetically encoded voltage indicator for all-optical electrophysiology. ACS Chem. Neurosci. 11, 3523–3531 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Hou, J. H., Kralj, J. M., Douglass, A. D., Engert, F. & Cohen, A. E. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents. Front. Physiol. 5, 1–10 (2014).

    Article  CAS  Google Scholar 

  84. Trautsch, I. et al. Optogenetic monitoring of the glutathione redox state in engineered human myocardium. Front. Physiol. 10, 272 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Klimas, A. & Entcheva, E. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective. J. Biomed. Opt. 19, 080701 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. van Opbergen, C. J. M. et al. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis. Theranostics 8, 4750–4764 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mutoh, H. & Knopfel, T. Probing neuronal activities with genetically encoded optical indicators: from a historical to a forward-looking perspective. Pflug. Arch. Eur. J. Physiol. 465, 361–371 (2013).

    Article  CAS  Google Scholar 

  88. Alford, S. C., Wu, J., Zhao, Y., Campbell, R. E. & Knopfel, T. Optogenetic reporters. Biol. Cell 105, 14–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Knöpfel, T. & Boyden, E. S. Tools for observing and controlling specific molecular or physiological pathways in intact cells and tissues. Preface. Prog. Brain Res. 196, vii–viii (2012).

    Article  PubMed  Google Scholar 

  90. Dugue, G. P., Akemann, W. & Knöpfel, T. A comprehensive concept of optogenetics. Prog. Brain Res. 196, 1–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Shui, B., Lee, J. C., Reining, S., Lee, F. K. & Kotlikoff, M. I. Optogenetic sensors and effectors: CHROMus—the Cornell Heart Lung Blood Institute resource for optogenetic mouse signaling. Front. Physiol. 5, 428 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cosentino, C. et al. Optogenetics. Engineering of a light-gated potassium channel. Science 348, 707–710 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Bernal Sierra, Y. A. et al. Potassium channel-based optogenetic silencing. Nat. Commun. 9, 4611 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Govorunova, E. G., Cunha, S. R., Sineshchekov, O. A. & Spudich, J. L. Anion channelrhodopsins for inhibitory cardiac optogenetics. Sci. Rep. 6, 33530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Han, X. et al. A high-light sensitivity optical neural silencer: development, and application to optogenetic control of nonhuman primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yizhar, O., Fenno, L., Zhang, F., Hegemann, P. & Diesseroth, K. Microbial opsins: a family of single-component tools for optical control of neural activity. Cold Spring Harb. Protoc. 2011, top102 (2011).

    Article  PubMed  Google Scholar 

  101. Schneider, F., Grimm, C. & Hegemann, P. Biophysics of channelrhodopsin. Annu. Rev. Biophys. 44, 167–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Williams, J. C. et al. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput. Biol. 9, e1003220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Williams, J. C. & Entcheva, E. Optogenetic versus electrical stimulation of human cardiomyocytes: modeling insights. Biophys. J. 108, 1934–1945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kato, H. E. et al. Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Nat. Commun. 6, 7177 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Oppermann, J. et al. Mermaids: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat. Commun. 10, 3315 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Park, S. A., Lee, S. R., Tung, L. & Yue, D. T. Optical mapping of optogenetically shaped cardiac action potentials. Sci. Rep. 4, 6125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Entcheva, E. & Williams, J. C. Channelrhodopsin2 current during the action potential: “optical AP clamp” and approximation. Sci. Rep. 4, 5838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Karathanos, T. V., Boyle, P. M. & Trayanova, N. A. Optogenetics-enabled dynamic modulation of action potential duration in atrial tissue: feasibility of a novel therapeutic approach. Europace 16 (Suppl. 4), iv69–iv76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ambrosi, C. M., Williams, J. C. & Entcheva, E. Optogenetic modulation of pacemaking, arrhythmia generation and inhibition with sustained (non-pulsed) light [abstract]. Circulation 130, A19856 (2014).

    Google Scholar 

  110. Burton, R. B. et al. Optical interrogation of sympathetic neuronal effects on macroscopic cardiomyocyte network dynamics. iScience 23, 101334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Burton, R. A. B. et al. Optical control of excitation waves in cardiac tissue. Nat. Photonics 9, 813–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Majumder, R. et al. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. eLife 7, e41076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Quach, B., Krogh-Madsen, T., Entcheva, E. & Christini, D. J. Light-activated dynamic clamp using iPSC-derived cardiomyocytes. Biophys. J. 115, 2206–2217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Majumder, R. et al. Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating. eLife 9, e55921 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tkatch, T. et al. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins. Proc. Natl Acad. Sci. USA 114, E5167–E5176 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dixon, R. E., Yuan, C., Cheng, E. P., Navedo, M. F. & Santana, L. F. Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels. Proc. Natl Acad. Sci. USA 109, 1749–1754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Beiert, T., Bruegmann, T. & Sasse, P. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes. Cardiovasc. Res. 102, 507–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Makowka, P. et al. Optogenetic stimulation of Gs-signaling in the heart with high spatio-temporal precision. Nat. Commun. 10, 1281 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kleinlogel, S. Optogenetic user’s guide to opto-gpcrs. Front. Biosci. 21, 794–805 (2016).

    Article  CAS  Google Scholar 

  120. Yakushenko, A. et al. On-chip optical stimulation and electrical recording from cells. J. Biomed. Opt. 18, 111402 (2013).

    Article  PubMed  Google Scholar 

  121. Mickoleit, M. et al. High-resolution reconstruction of the beating zebrafish heart. Nat. Methods 11, 919–922 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Bingen, B. O. et al. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc. Res. 104, 194–205 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Weber, M. & Huisken, J. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. Swiss Med. Wkly. 145, w14227 (2015).

    PubMed  Google Scholar 

  124. Ambrosi, C. M., Boyle, P. M., Chen, K., Trayanova, N. A. & Entcheva, E. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability. Sci. Rep. 5, 17350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Alex, A., Li, A., Tanzi, R. E. & Zhou, C. Optogenetic pacing in Drosophila melanogaster. Sci. Adv. 1, e1500639 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Zaglia, T. et al. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of channelrhodopsin-2. Proc. Natl Acad. Sci. USA 112, E4495–E4504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wengrowski, A. M. et al. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc. Res. 105, 143–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Klimas, A. et al. Optodyce as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat. Commun. 7, 11542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nyns, E. C. A. et al. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. Eur. Heart J. 38, 2132–2136 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Crocini, C. et al. Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Sci. Rep. 6, 35628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yu, J. et al. Optogap: an optogenetics-enabled assay for quantification of cell-cell coupling in multicellular cardiac tissue. Preprint at https://www.biorxiv.org/content/10.1101/171397v1 (2017).

  133. Werley, C. A., Chien, M. P. & Cohen, A. E. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation. Biomed. Opt. Express 8, 5794–5813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weber, M. et al. Cell-accurate optical mapping across the entire developing heart. eLife 6, 1–14 (2017).

    Google Scholar 

  135. Li, Q. et al. Electrophysiological properties and viability of neonatal rat ventricular myocyte cultures with inducible ChR2 expression. Sci. Rep. 7, 1531 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Quiñonez Uribe, R. A., Luther, S., Diaz-Maue, L. & Richter, C. Energy-reduced arrhythmia termination using global photostimulation in optogenetic murine hearts. Front. Physiol. 9, 1651 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Scardigli, M. et al. Real-time optical manipulation of cardiac conduction in intact hearts. J. Physiol. 596, 3841–3858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McNamara, H. M. et al. Geometry-dependent arrhythmias in electrically excitable tissues. Cell Syst. 7, 359–370.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Giardini, F. et al. A software architecture to mimic a ventricular tachycardia in intact murine hearts by means of an all-optical platform. Methods Protoc. 2, 7 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  140. Nguyen, C. et al. Simultaneous voltage and calcium imaging and optogenetic stimulation with high sensitivity and a wide field of view. Biomed. Opt. Express 10, 789–806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dong, R. et al. A protocol for dual calcium-voltage optical mapping in murine sinoatrial preparation with optogenetic pacing. Front. Physiol. 10, 954 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Moreno, A. et al. Sudden heart rate reduction upon optogenetic release of acetylcholine from cardiac parasympathetic neurons in perfused hearts. Front. Physiol. 10, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kostecki, G. et al. Optogenetic currents in myofibroblasts acutely alter electrophysiology and conduction of co-cultured cardiomyocytes. Preprint at https://www.biorxiv.org/content/10.1101/2020.06.02.124529v1 (2020).

  144. Li, W., Han, J. L. & Entcheva, E. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol 319, H1112–H1122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wong, J., Abilez, O. J. & Kuhl, E. Computational optogenetics: a novel continuum framework for the photoelectrochemistry of living systems. J. Mech. Phys. Solids 60, 1158–1178 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Boyle, P. M., Williams, J. C., Ambrosi, C. M., Entcheva, E. & Trayanova, N. A. A comprehensive multiscale framework for simulating optogenetics in the heart. Nat. Commun. 4, 2370 (2013).

    Article  PubMed  Google Scholar 

  147. Bruegmann, T. et al. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J. Clin. Invest. 126, 3894–3904 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Karathanos, T. V., Bayer, J. D., Wang, D., Boyle, P. M. & Trayanova, N. A. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study. J. Physiol. 594, 6879–6891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Boyle, P. M. et al. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models. J. Physiol. 596, 181–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Abilez, O. J. et al. Multiscale computational models for optogenetic control of cardiac function. Biophys. J. 101, 1326–1334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Gintant, G. et al. Use of human induced pluripotent stem cell-derived cardiomyocytes in preclinical cancer drug cardiotoxicity testing: a scientific statement from the American Heart Association. Circ. Res. 125, e75–e92 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Abilez, O. J. Optogenetic LED array for perturbing cardiac electrophysiology. Annu. Int. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1619–1622 (2013).

    Google Scholar 

  154. Leyton-Mange, J. S. & Milan, D. J. Pluripotent stem cells as a platform for cardiac arrhythmia drug screening. Curr. Treat. Options Cardiovasc. Med. 16, 334 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhuge, Y. et al. Human pluripotent stem cell tools for cardiac optogenetics. Annu. Int. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 6171–6174 (2014).

    Google Scholar 

  156. Klimas, A. et al. Disease modeling in human induced pluripotent stem cell derived cardiomyocytes using high-throughput all-optical dynamic cardiac electrophysiology [abstract FF3A.3]. Front. Optics https://doi.org/10.1364/FIO.2016.FF3A.3 (2016).

    Article  Google Scholar 

  157. Chang, Y. F. et al. Non-invasive phenotyping and drug testing in single cardiomyocytes or beta-cells by calcium imaging and optogenetics. PLoS ONE 12, e0174181 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Lapp, H. et al. Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes. Sci. Rep. 7, 9629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rehnelt, S. et al. Frequency-dependent multi-well cardiotoxicity screening enabled by optogenetic stimulation. Int. J. Mol. Sci. 18, 2634 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  160. Park, S. J. et al. Insights into the pathogenesis of catecholaminergic polymorphic ventricular tachycardia from engineered human heart tissue. Circulation 140, 390–404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Patel, D., Stohlman, J., Dang, Q., Strauss, D. G. & Blinova, K. Assessment of proarrhythmic potential of drugs in optogenetically paced induced pluripotent stem cell-derived cardiomyocytes. Toxicol. Sci. 170, 167–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Dwenger, M. et al. Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J. Tissue Eng. 10, 2041731419841748 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Lemme, M. et al. Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue. Cardiovasc. Res. 116, 1487–1499 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  164. Paci, M. et al. All-optical electrophysiology refines populations of in silico human iPSC-CMs for drug evaluation. Biophys. J. 118, 2596–2611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rope, A. F. et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 89, 28–43 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mond, H. G. & Proclemer, A. The 11th world survey of cardiac pacing and implantable cardioverter–defibrillators: calendar year 2009 — a World Society of Arrhythmias project. Pacing Clin. Electrophysiol. 34, 1013–1027 (2011).

    Article  PubMed  Google Scholar 

  167. Huang, D. T. & Traub, D. Recurrent ventricular arrhythmia storms in the age of implantable cardioverter defibrillator therapy: a comprehensive review. Prog. Cardiovasc. Dis. 51, 229–236 (2008).

    Article  PubMed  Google Scholar 

  168. Baumert, J., Schmitt, C. & Ladwig, K. H. Psychophysiologic and affective parameters associated with pain intensity of cardiac cardioverter defibrillator shock discharges. Psychosom. Med. 68, 591–597 (2006).

    Article  PubMed  Google Scholar 

  169. Nussinovitch, U., Shinnawi, R. & Gepstein, L. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovasc. Res. 102, 176–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Ambrosi, C. M. & Entcheva, E. Optogenetic control of cardiomyocytes via viral delivery. Methods Mol. Biol. 1181, 215–228 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Vogt, C. C. et al. Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc. Res. 106, 338–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Chan, V. et al. Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip 15, 2258–2268 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Yu, J., Chen, K., Lucero, R. V., Ambrosi, C. M. & Entcheva, E. Cardiac optogenetics: enhancement by all-trans-retinal. Sci. Rep. 5, 16542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhu, Y. C., Uradu, H., Majeed, Z. R. & Cooper, R. L. Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol. Rep. 4, e12695 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Feola, I., Teplenin, A., de Vries, A. A. & Pijnappels, D. A. Optogenetic engineering of atrial cardiomyocytes. Methods Mol. Biol. 1408, 319–331 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Ambrosi, C. M., Sadananda, G., Han, J. L. & Entcheva, E. Adeno-associated virus mediated gene delivery: implications for scalable in vitro and in vivo cardiac optogenetic models. Front. Physiol. 10, 168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kopton, R. A. et al. Electromechanical assessment of optogenetically modulated cardiomyocyte activity. J. Vis. Exp. 157, e60490 (2020).

    Google Scholar 

  178. Zgierski-Johnston, C. M. et al. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts. Prog. Biophys. Mol. Biol. 154, 51–61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bruegmann, T., Beiert, T., Vogt, C. C., Schrickel, J. W. & Sasse, P. Optogenetic termination of atrial fibrillation in mice. Cardiovasc. Res. 114, 713–723 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Yu, J. & Entcheva, E. Inscribing optical excitability to non-excitable cardiac cells: viral delivery of optogenetic tools in primary cardiac fibroblasts. Methods Mol. Biol. 1408, 303–317 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Simone, S. A. et al. The role of membrane capacitance in cardiac impulse conduction: an optogenetic study with non-excitable cells coupled to cardiomyocytes. Front. Physiol. 11, 194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Merrill, D. R., Bikson, M. & Jefferys, J. G. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005).

    Article  PubMed  Google Scholar 

  184. Zipes, D., Fischer, J., King, R., Nicoll, A. & Jolly, W. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am. J. Cardiol. 36, 37–44 (1975).

    Article  CAS  PubMed  Google Scholar 

  185. Chattipakorn, N., Banville, I., Gray, R. A. & Ideker, R. E. Effects of shock strengths on ventricular defibrillation failure. Cardiovasc. Res. 61, 39–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Kay, M. W., Walcott, G. P., Gladden, J. D., Melnick, S. B. & Rogers, J. M. Lifetimes of epicardial rotors in panoramic optical maps of fibrillating swine ventricles. Am. J. Physiol. Heart Circ. Physiol. 291, H1935–H1941 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Rickard, J. & Wilkoff, B. L. Advances in implantable cardioverter defibrillator therapy. Expert. Rev. Cardiovasc. Ther. 14, 291–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Luther, S. et al. Low-energy control of electrical turbulence in the heart. Nature 475, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cheng, Y. et al. Optogenetic approaches for termination of ventricular tachyarrhythmias after myocardial infarction in rats in vivo. J. Biophotonics 13, e202000003 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Feola, I. et al. Localized optogenetic targeting of rotors in atrial cardiomyocyte monolayers. Circ. Arrhythm. Electrophysiol. 10, e005591 (2017).

    Article  PubMed  Google Scholar 

  191. Nyns, E. C. A. et al. An automated hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Sci. Transl. Med. 11, 481 (2019).

    Article  CAS  Google Scholar 

  192. Rao, P. et al. Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. Biomed. Opt. Express 11, 1401–1416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Johannsmeier, S. et al. Evaluation of a model for deep tissue optogenetic stimulation. Proc. SPIE 11227, 1122708 (2020).

    Google Scholar 

  194. Kopton, R. A. et al. Cardiac electrophysiological effects of light-activated chloride channels. Front. Physiol. 9, 1806 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Funken, M., Malan, D., Sasse, P. & Bruegmann, T. Optogenetic hyperpolarization of cardiomyocytes terminates ventricular arrhythmia. Front. Physiol. 10, 498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Stanley, C. E., Mauss, A. S., Borst, A. & Cooper, R. L. The effects of chloride flux on Drosophila heart rate. Methods Protoc. 2, 73 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  197. Tallini, Y. N. et al. Genetically encoded probes provide a window on embryonic arrhythmia. Methods Mol. Biol. 1092, 195–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Nussinovitch, U. & Gepstein, L. Optogenetics for suppression of cardiac electrical activity in human and rat cardiomyocyte cultures. Neurophotonics 2, 031204 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Watanabe, M. et al. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block. Cardiovasc. Res. 113, 354–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. McNamara, H. M., Zhang, H., Werley, C. A. & Cohen, A. E. Optically controlled oscillators in an engineered bioelectric tissue. Phys. Rev. X 6, 031001 (2016).

    Google Scholar 

  201. Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sauer, B. Inducible gene targeting in mice using the Cre/loxsystem. Methods 14, 381–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  203. Prando, V. et al. Dynamics of neuroeffector coupling at cardiac sympathetic synapses. J. Physiol. 596, 2055–2075 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rajendran, P. S. et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat. Commun. 10, 1944 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Packer, A. M., Russell, L. E., Dalgleish, H. W. & Hausser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Mighiu, A. S. & Heximer, S. P. Controlling parasympathetic regulation of heart rate: a gatekeeper role for RGS proteins in the sinoatrial node. Front. Physiol. 3, 204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Randall, W. C., Milosavljevic, M., Wurster, R. D., Geis, G. S. & Ardell, J. L. Selective vagal innervation of the heart. Ann. Clin. Lab. Sci. 16, 198–208 (1986).

    CAS  PubMed  Google Scholar 

  208. Sampaio, K. N., Mauad, H., Spyer, K. M. & Ford, T. W. Differential chronotropic and dromotropic responses to focal stimulation of cardiac vagal ganglia in the rat. Exp. Physiol. 88, 315–327 (2003).

    Article  PubMed  Google Scholar 

  209. Waldron, N. H., Fudim, M., Mathew, J. P. & Piccini, J. P. Neuromodulation for the treatment of heart rhythm disorders. JACC Basic Transl. Sci. 4, 546–562 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Oh, Y. et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19, 95–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yu, L. et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J. Am. Coll. Cardiol. 70, 2778–2790 (2017).

    Article  PubMed  Google Scholar 

  212. Mastitskaya, S. et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc. Res. 95, 487–494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Machhada, A. et al. Vagal determinants of exercise capacity. Nat. Commun. 8, 15097 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wu, Y. et al. Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle. Vascul. Pharmacol. 71, 192–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Malloy, C. et al. Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 791–806 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Wang, Y. et al. Optogenetic control of heart rhythm by selective stimulation of cardiomyocytes derived from PNMT+ cells in murine heart. Sci. Rep. 7, 40687 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Felker, A. et al. Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nat. Commun. 9, 2001 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Rorsman, N. J. G., Ta, C. M., Garnett, H., Swietach, P. & Tammaro, P. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2. Br. J. Pharmacol. 175, 2028–2045 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ishikawa, K., Weber, T. & Hajjar, R. J. Human cardiac gene therapy. Circ. Res. 123, 601–613 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Shang, W. et al. Imaging Ca2+ nanosparks in heart with a new targeted biosensor. Circ. Res. 114, 412–420 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In this Review, we have attempted a comprehensive coverage of all work in the area over the past 10 years; we apologize for any potentially missing publications. We greatly appreciate the critical contributions of scientists and trainees in the Entcheva laboratory and of the Kay laboratory at The George Washington University, USA, for their many questions and discussions regarding numerous scientific aspects of cardiac optogenetics. For the figures in the initial submission of the manuscript, former trainees A. Klimas prepared a draft of parts of Fig. 2 and Y. Wu prepared parts of Fig. 4 (disease modelling), and current trainee B. Alber prepared parts of Fig. 7. The authors are supported in part by grants from the NIH (R01-HL144157, R01-HL133862, R01-HL146169, R01-HL147279 and R21-EB026152) and the National Science Foundation (EFMA 1830941, CBET1705645 and PFI 1827535).

Author information

Authors and Affiliations

Authors

Contributions

Both the authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Emilia Entcheva or Matthew W. Kay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks L. Sacconi and D. Pijnappels and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tandem cell unit

A multicellular unit composed of light-sensitive, non-excitable cells that are electrically coupled to non-transduced excitable cells.

Optical dynamic clamp

A real-time feedback system to ‘inject’ a desired current into light-sensitized cells or tissue according to a computer model and voltage measurements.

Cardioversion

A procedure that restores normal sinus rhythm to a heart that has an arrhythmia.

Gene painting

Transduction of tissue with a gene by ‘painting’ it with adenovirus, using a solution containing the vector, an adhering polymer and a weak protease to promote vector penetration.

Up-conversion nanoparticles

Optical nanomaterials, typically doped with lanthanide ions, that up-convert two or more lower energy photons (longer wavelengths) into one high-energy photon (shorter wavelength).

Optical wave steering

A procedure in which specific space–time dynamic light patterns are used to control the speed and direction of an electrical wavefront within excitable tissue that expresses an opsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Entcheva, E., Kay, M.W. Cardiac optogenetics: a decade of enlightenment. Nat Rev Cardiol 18, 349–367 (2021). https://doi.org/10.1038/s41569-020-00478-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00478-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing