Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination

Abstract

Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides. CpG engages Toll-like receptors and therefore acts to activate dendritic cells. Through in vitro cell culture studies and in vivo tumour treatment models, we demonstrate that square blocks induce Th1 immune polarization when CpG is spaced at 3.5 nm. We observe that this DNA origami vaccine enhances DC activation, antigen cross-presentation, CD8 T-cell activation, Th1-polarized CD4 activation and natural-killer-cell activation. The vaccine also effectively synergizes with anti-PD-L1 for improved cancer immunotherapy in melanoma and lymphoma models and induces long-term T-cell memory. Our results suggest that DNA origami may serve as a platform for controlling adjuvant spacing and co-delivering antigens in vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SQB-DNA-origami-based vaccines (DoriVac) were fabricated with different spacings of CpG adjuvant.
Fig. 2: CpG, delivered at a spacing of 3.5 nm on SQB DNA origami, provides enhanced DC activation for Th1-polarized immune response.
Fig. 3: T-cell activation by DCs instructed by DoriVac bearing varying CpG spatial patterns and densities revealed distinctive anti-tumoural effects.
Fig. 4: DoriVac distribution, in vivo immune-cell stimulation and prophylactic vaccination effects.
Fig. 5: Immune-cell profiling revealed a Th1-polarized immune response after therapeutic DoriVac treatment in mouse melanoma models.
Fig. 6: DoriVac combined with immune checkpoint inhibitor anti-PD-L1 exhibited synergistic, durable T-cell responses.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the Article and its Supplementary Information. The RNAseq data for the stimulated BMDCs generated and analysed in this Article have been deposited in NCBI’s Gene Expression Omnibus under accession no. GSE251850. Source data are provided with this paper.

References

  1. Sahin, U. & Tureci, O. Personalized vaccines for cancer immunotherapy. Science 359, 1355–1360 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 9237–9242 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bode, C., Zhao, G., Steinhagen, F., Kinjo, T. & Klinman, D. M. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines 10, 499–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klinman, D. M., Sato, T. & Shimosato, T. Use of nanoparticles to deliver immunomodulatory oligonucleotides. WIREs Nanomed. Nanobiotechnol. 8, 631–637 (2016).

    Article  CAS  Google Scholar 

  5. Schuller, V. J. et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5, 9696–9702 (2011).

    Article  PubMed  Google Scholar 

  6. Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 12, 387–400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaw, A. et al. Spatial control of membrane receptor function using ligand nanocalipers. Nat. Methods 11, 841–846 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Kwon, P. S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ohto, U. et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702–705 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Leleux, J. A., Pradhan, P. & Roy, K. Biophysical attributes of CpG presentation control TLR9 signaling to differentially polarize systemic immune responses. Cell Rep. 18, 700–710 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt, N. W. et al. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation. Nat. Mater. 14, 696–700 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lee, E. Y. et al. A review of immune amplification via ligand clustering by self-assembled liquid-crystalline DNA complexes. Adv. Colloid Interface Sci. 232, 17–24 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Comberlato, A., Koga, M. M., Nussing, S., Parish, I. A. & Bastings, M. M. C. Spatially controlled activation of Toll-like receptor 9 with DNA-based nanomaterials. Nano Lett. 22, 2506–2513 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du, R. R. et al. Innate immune stimulation using 3D wireframe DNA origami. ACS Nano 16, 20340–20352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johansson, M., Denardo, D. G. & Coussens, L. M. Polarized immune responses differentially regulate cancer development. Immunol. Rev. 222, 145–154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yew, N. S. et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol. Ther. 5, 731–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, V. et al. DNA nanotechnology for cancer therapy. Theranostics 6, 710–725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Udomprasert, A. & Kangsamaksin, T. DNA origami applications in cancer therapy. Cancer Sci. 108, 1535–1543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fcγ receptors using DNA origami promotes phagocytosis. eLife 10, e68311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berger, R. M. L. et al. Nanoscale FasL organization on DNA origami to decipher apoptosis signal activation in cells. Small 17, e2101678 (2021).

    Article  PubMed  Google Scholar 

  24. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520–524 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih, W. M. Exploiting weak interactions in DNA self-assembly. Science 347, 1417–1418 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen, H. et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Min, Y. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chesson, C. B. & Zloza, A. Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer. Nanomedicine 12, 2693–2706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anastassacos, F. M., Zhao, Z., Zeng, Y. & Shih, W. M. Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. J. Am. Chem. Soc. 142, 3311–3315 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Lucas, C. R. et al. DNA origami nanostructures elicit dose-dependent immunogenicity and are nontoxic up to high doses in vivo. Small 18, e2108063 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wamhoff, E. C. et al. Evaluation of nonmodified wireframe DNA origami for acute toxicity and biodistribution in mice. ACS Appl. Bio. Mater. 6, 1960–1969 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Njongmeta, L. M. et al. CD205 antigen targeting combined with dendritic cell recruitment factors and antigen-linked CD40L activation primes and expands significant antigen-specific antibody and CD4(+) T cell responses following DNA vaccination of outbred animals. Vaccine 30, 1624–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Lahoud, M. H. et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc. Natl Acad. Sci. USA 109, 16270–16275 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. You, C. X. et al. AAV2/IL-12 gene delivery into dendritic cells (DC) enhances CTL stimulation above other IL-12 applications: evidence for IL-12 intracrine activity in DC. Oncoimmunology 1, 847–855 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Heo, M. B., Kim, S. Y., Yun, W. S. & Lim, Y. T. Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int J. Nanomed. 10, 5981–5992 (2015).

    CAS  Google Scholar 

  41. Scheuerpflug, A. et al. The role of dendritic cells for therapy of B-cell lymphoma with immune checkpoint inhibitors. Cancer Immunol. Immunother. 70, 1343–1350 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Keestra, A. M., de Zoete, M. R., Bouwman, L. I. & van Putten, J. P. Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J. Immunol. 185, 460–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Oldenburg, M. et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337, 1111–1115 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Spies, B. et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol. 171, 5908–5912 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, D. et al. ‘Immunomers’–novel 3′-3′-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Res. 30, 4460–4469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Minari, J., Mochizuki, S. & Sakurai, K. Enhanced cytokine secretion owing to multiple CpG side chains of DNA duplex. Oligonucleotides 18, 337–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, L. K. et al. Interleukin-10 directly inhibits CD8(+) T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 48, 299–312 e295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17, 528–534 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toubi, E. & Shoenfeld, Y. Protective autoimmunity in cancer (review). Oncol. Rep. 17, 245–251 (2007).

    CAS  PubMed  Google Scholar 

  51. Ke, Y., Voigt, N. V., Gothelf, K. V. & Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hahn, J., Wickham, S. F., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Q. Yan, Z. Zhao, T. Zhang, P. Lill, P. Prabhala, L. Chou, J. Han, D. Minev, B. Everhart, J. Deng, D. Zhang, K. Adu-Berchie, H. Dembele, A. Rajwar and K. Simpson for aiding in labour support, experimental design, exploring experiments and manuscript proofreading. We also thank M. Perez, M. Carr and E. Zigon for their assistance in lab management and facility usage. We thank M. Bastings and A. Li for exploration—before the current project initiated—of CpG-functionalized DNA origami barrels for immune stimulation. This work was funded by the Barr Award granted by the Claudia Adams Barr Program (Y.C.Z.) in the Dana-Farber Cancer Institute and by Wyss validation funding (Y.C.Z.) at the Wyss Institute for Biologically Inspired Engineering at Harvard. This study was supported by the Korean Fund for Regenerative Medicine (J.H.R.; 21A0504L1) funded by the Korean government (the Ministry of Science and ICT and the Korean Ministry of Health & Welfare) and the Intramural Research Program of KIST (J.H.R.; no. 2E30840). This project was also supported by an NIH U54 grant (W.M.S.; CA244726-01).

Author information

Authors and Affiliations

Authors

Contributions

Y.C.Z. developed and planned the experiments, carried out the vaccine fabrication and validation, and wrote the manuscript. J.H.R. and W.M.S. provided the experimental and theoretical guidance and edited the manuscript. O.J.Y. assisted Y.C.Z. in performing the experiments, analysing the data and manuscript editing. C.M.W., F.M.A., J.I.M. and G.I. assisted with the DNA origami design, modelling and fabrication. H.B. performed the RNAseq analysis. M.O.D., M. Sobral, M. Sanchez, A.R.G. and A.V. helped with the animal study design, modelling and sampling. T.C.F. assisted with the confocal experiment. Y.C. assisted with the 3D modelling and manuscript editing. G.G.F. and D.N. guided the statistical analysis. C.J.W. and D.B.K. guided the experiment design and offered manuscript editing. D.J.M. and I.C.K. provided project support and manuscript editing.

Corresponding authors

Correspondence to Ju Hee Ryu or William M. Shih.

Ethics declarations

Competing interests

W.M.S., J.H.R. and Y.C.Z. are inventors on US patent application PCT/US2020/036281 held by Dana-Farber Cancer Institute, Korea Institute of Science and Technology and Wyss Institute (filed on 5 June 2020) partially based on this work. All other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mark Bathe, Diana Morzy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Tables 1–6, Discussion and Methods.

Reporting Summary

Supplementary Information

Supplementary Video 1 This video demonstrates the effective uptake of DNA origami nanoparticles coated with K10-PEG5k by DCs within a time frame of 2 h and reveals the presence of DNA origami nanoparticles (pink) conjugated with OVA antigen (green) within the DCs, along with late endosomes (cyan).

Supplementary Data 1

Statistical source data.

Supplementary Data 2

Statistical source data.

Supplementary Data 3

Statistical source data.

Supplementary Data 4

Statistical source data.

Supplementary Data 5

Statistical source data.

Supplementary Data 6

Statistical source data.

Supplementary Data 7

Statistical source data.

Supplementary Data 8

Statistical source data.

Supplementary Data 9

Statistical source data.

Supplementary Data 10

Statistical source data.

Supplementary Data 11

Statistical source data.

Supplementary Data 12

Statistical source data.

Supplementary Data 13

Statistical source data.

Supplementary Data 14

Statistical source data.

Supplementary Data 15

Statistical source data.

Supplementary Data 16

Statistical source data.

Supplementary Data 17

Statistical source data.

Supplementary Data 18

Statistical source data.

Supplementary Data 19

Statistical source data.

Supplementary Data 20

Statistical source data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y.C., Young, O.J., Wintersinger, C.M. et al. Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01615-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research