Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs

Abstract

Magnetic skyrmions are knot-like quasiparticles. They are candidates for non-volatile data storage in which information is moved between fixed read and write terminals. The read-out operation of skyrmion-based spintronic devices will rely on the electrical detection of a single magnetic skyrmion within a nanostructure. Here we present Pt/Co/Ir nanodiscs that support skyrmions at room temperature. We measured the Hall resistivity and simultaneously imaged the spin texture using magnetic scanning transmission X-ray microscopy. The Hall resistivity is correlated to both the presence and size of the skyrmion. The size-dependent part matches the expected anomalous Hall signal when averaging the magnetization over the entire disc. We observed a resistivity contribution that only depends on the number and sign of skyrmion-like objects present in the disc. Each skyrmion gives rise to 22 ± 2 nΩ cm irrespective of its size. This contribution needs to be considered in all-electrical detection schemes applied to skyrmion-based devices. Not only the area of Néel skyrmions but also their number and sign contribute to their Hall resistivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Field evolution of the magnetic skyrmion.
Fig. 2: Multiple magnetic skyrmion creation.
Fig. 3: Hall resistance signals from a single skyrmion.

Similar content being viewed by others

Data availability

The data associated with this paper are openly available from the University of Leeds data repository, https://doi.org/10.5518/262.

References

  1. Braun, H. B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).

    Article  CAS  Google Scholar 

  2. Kim, J. V. & Yoo, M. W. Current-driven skyrmion dynamics in disordered films. Appl. Phys. Lett. 110, 132404 (2017).

    Article  Google Scholar 

  3. Lin, S. Z., Reichhardt, C., Batista, C. D. & Saxena, A. Particle model for skyrmions in metallic chiral magnets: dynamics, pinning, and creep. Phys. Rev. B 87, 214419 (2013).

    Article  Google Scholar 

  4. Muller, J. & Rosch, A. Capturing of a magnetic skyrmion with a hole. Phys. Rev. B 91, 054410 (2015).

    Article  Google Scholar 

  5. Rohart, S., Miltat, J. & Thiaville, A. Path to collapse for an isolated Néel skyrmion. Phys. Rev. B 93, 214412 (2016).

    Article  Google Scholar 

  6. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  7. Dzyaloshinsky, I. A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  CAS  Google Scholar 

  8. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  9. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

    Article  Google Scholar 

  10. Han, D. S. et al. Asymmetric hysteresis for probing Dzyaloshinskii–Moriya Interaction. Nano Lett. 16, 4438–4446 (2016).

    Article  CAS  Google Scholar 

  11. Zeissler, K. et al. Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks. Sci. Rep. 7, 15125 (2017).

    Article  CAS  Google Scholar 

  12. Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    Article  CAS  Google Scholar 

  13. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 731–731 (2016).

    Article  CAS  Google Scholar 

  14. Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

    Article  CAS  Google Scholar 

  15. Jiang, W. J. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article  CAS  Google Scholar 

  16. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article  CAS  Google Scholar 

  17. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  18. Woo, S. et al. Spin–orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy. Nat. Commun. 8, 15573 (2017).

    Article  CAS  Google Scholar 

  19. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    Article  CAS  Google Scholar 

  20. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  21. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  22. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  23. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

  24. Tanabe, K. & Yamada, K. Electrical detection of magnetic states in crossed nanowires using the topological Hall effect. Appl. Phys. Lett. 110, 132405 (2017).

    Article  Google Scholar 

  25. Ritz, R. et al. Giant generic topological Hall resistivity of MnSi under pressure. Phys. Rev. B 87, 134424 (2013).

    Article  Google Scholar 

  26. McVitie, S. et al. A transmission electron microscope study of Néel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction. Sci. Rep. 8, 5703 (2018).

    Article  CAS  Google Scholar 

  27. Chauleau, J. Y. et al. Chirality in magnetic multilayers probed by the symmetry and the amplitude of dichroism in X-ray resonant magnetic scattering. Phys. Rev. Lett. 120, 037202 (2018).

    Article  Google Scholar 

  28. Jalil, M. B. A. & Tan, S. G. Robustness of topological Hall effect of nontrivial spin textures. Sci. Rep. 4, 5123 (2014).

    Article  CAS  Google Scholar 

  29. Berger, L. Galvanomagnetic voltages in the vicinity of a domain wall in ferromagnetic thin films. J. Appl. Phys. 69, 1550–1555 (1991).

    Article  CAS  Google Scholar 

  30. West, F. G. Rotating‐field technique for galvanomagnetic measurements. J. Appl. Phys. 34, 1171–1173 (1963).

    Article  Google Scholar 

  31. Berger, L. Low‐field magnetoresistance and domain drag in ferromagnets. J. Appl. Phys. 49, 2156–2161 (1978).

    Article  CAS  Google Scholar 

  32. Boulle, O. et al. Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls. Phys. Rev. Lett. 101, 216601 (2008).

    Article  CAS  Google Scholar 

  33. San Emeterio Alvarez, L. et al. Spin-transfer-torque-assisted domain-wall creep in a Co/Pt multilayer wire. Phys. Rev. Lett. 104, 137205 (2010).

    Article  CAS  Google Scholar 

  34. Isasa, M., Villamor, E., Hueso, L. E., Gradhand, M. & Casanova, F. Temperature dependence of spin diffusion length and spin Hall angle in Au and Pt. Phys. Rev. B 91, 024402 (2015).

    Article  Google Scholar 

  35. Liu, L., Buhrman, R. A. & Ralph, D. C. Review and analysis of measurements of the spin Hall effect in platinum. Preprint at http://arXiv.org/cond-mat.mes-hall/1111.3702v3 (2012).

  36. Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

    Article  CAS  Google Scholar 

  37. Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

    Article  CAS  Google Scholar 

  38. Li, Y. F. et al. Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 110, 117202 (2013).

    Article  Google Scholar 

  39. Du, H. F. et al. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat. Commun. 6, 7637 (2015).

    Article  Google Scholar 

  40. Kanazawa, N. et al. Discretized topological Hall effect emerging from skyrmions in constricted geometry. Phys. Rev. B 91, 041122 (2015).

    Article  Google Scholar 

  41. Liang, D., DeGrave, J. P., Stolt, M. J., Tokura, Y. & Jin, S. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect. Nat. Commun. 6, 8217 (2015).

    Article  CAS  Google Scholar 

  42. Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotech. 10, 1039–1042 (2015).

    Article  CAS  Google Scholar 

  43. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  44. Hamamoto, K. & Nagaosa, N. Electrical detection of a skyrmion in a magnetic tunneling junction. Preprint at http://arXiv.org/cond-mat.mes-hall/180304588 (2018).

  45. Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotech. 13, 233–237 (2018).

    Article  CAS  Google Scholar 

  46. Raju, M. et al. Evolution of chiral magnetic textures and their topological Hall signature in Ir/Fe/Co/Pt multilayer films. Preprint at http://arXiv.org/cond-mat.mes-hall/1708.04084 (2017).

  47. Raabe, J. et al. PolLux: a new facility for soft X-ray spectromicroscopy at the Swiss Light Source. Rev. Sci. Instrum. 79, 113704 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from European Union (H2020 grant MAGicSky no. FET-Open-665095.103 and FP7 ITN 'WALL' (grant no. 608031)), as well as from the Diamond Light Source and the Swiss Nanoscience Institute (grant P1502), is gratefully acknowledged. Part of this work was carried out at the PolLux (X07DA) and SIM (X11MA) beamline of the Swiss Light Source. The PolLux end station was financed by the German Minister für Bildung und Forschung through contracts 05KS4WE1/6 and 05KS7WE1.

Author information

Authors and Affiliations

Authors

Contributions

C.H.M. with K.Z., S.F., J.R. and G.B. conceived the experiment. S.F. and J.R. developed the STXM to incorporate transport measurements. S.F., J.R. and G.B. set up the electrical measurement inside the STXM. K.Z., K.S., J.M., S.F. and G.B. acquired the STXM and associated transport data on the discs. K.Z., S.F. and G.B. analysed the STXM and electrical transport data. K.Z. and F.A.M. performed the Hall bar transport measurement. K.Z. grew the samples and characterized the material properties. S.F., A.K. and D.M.B. performed the X-ray photoemission electron microscopy experiments and analysis. K.Z. performed the magnetoresistance simulations. K.Z. and M.C.R., with support from E.H.L., fabricated the sample. K.Z. wrote the manuscript with G.B. and C.H.M. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Katharina Zeissler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5

Supplementary Video 1

Magnetic contrast images of one skyrmion (N = 1) stabilized in the disc repeat 1

Supplementary Video 2

Magnetic contrast images of one skyrmion (N = 1) stabilized in the disc repeat 2

Supplementary Video 3

Magnetic contrast images of two skyrmions (N = 2) stabilized in the disc

Supplementary Video 4

Magnetic contrast images of two skyrmions (N = –2) stabilized in the disc

Supplementary Video 5

Magnetic contrast images of three skyrmions (N = 3) stabilized in the disc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeissler, K., Finizio, S., Shahbazi, K. et al. Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nature Nanotech 13, 1161–1166 (2018). https://doi.org/10.1038/s41565-018-0268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0268-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing