Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity

Abstract

Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin–Benson–Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bathymetry of the East Pacific Rise 9–10° N region.
Fig. 2: Assimilation of 14C-bicarbonate by hydrothermal vent deposit hosted microbial communities.
Fig. 3: NanoSIMS analysis of 15N-ammonium and 13C-bicarbonate assimilation in individual microbial cells from active (Alvinellid Rock) and inactive (M Vent) hydrothermal vent deposits.
Fig. 4: Microbial community composition from metagenomes on inactive (Lucky’s Mound and Mosh Pit) and inactive-but-proximal (Bio9) hydrothermal vent deposits.
Fig. 5: Pathways of microbial carbon fixation on hydrothermal vent deposits.

Similar content being viewed by others

Data availability

Raw metagenomic data are available in the NCBI Sequence Read Archive (SRA) under BioProject PRJNA998752.

References

  1. Hannington, M., Jamieson, J., Monecke, T., Petersen, S. & Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 39, 1155–1158 (2011).

    Article  CAS  ADS  Google Scholar 

  2. Haymon, R. M. Growth history of hydrothermal black smoker chimneys. Nature 301, 695–698 (1983).

    Article  CAS  ADS  Google Scholar 

  3. Van Dover, C. L. in The Ecology of Deep-Sea Hydrothermal Vents (Princeton Univ. Press, 2021).

  4. Jannasch, H. W. & Wirsen, C. O. Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29, 592–598 (1979).

    Article  CAS  Google Scholar 

  5. Corliss, J. B. et al. Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083 (1979).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Jamieson, J. W. et al. Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 14, 2084–2099 (2013).

    Article  ADS  Google Scholar 

  7. Cherkashov, G. et al. Sulfide geochronology along the northern equatorial Mid-Atlantic Ridge. Ore Geol. Rev. 87, 147–154 (2017).

    Article  Google Scholar 

  8. Jamieson, J. W., Galley, C., McNeil, N. & Mora, D. S. Evaluating episodicity of high-temperature venting within seafloor hydrothermal vent fields. Earth Planet. Sci. Lett. 606, 118051 (2023).

    Article  CAS  Google Scholar 

  9. Lalou, C., Reyss, J. L. & Brichet, E. Age of sub-bottom sulfide samples at the TAG active mound. In Proc. Ocean Drilling Program 158 (Texas A&M University, 1998).

  10. Kuznetsov, V. et al. The oldest seafloor massive sulfide deposits at the Mid-Atlantic Ridge: Th/U chronology and composition. Geochronometria 42, 100–106 (2015).

  11. Kuznetsov, V. et al. 230Th/U chronology of ore formation within the Semyenov hydrothermal district (13° 31′ N) at the Mid-Atlantic ridge. Geochronometria 38, 72–76 (2011).

    Article  CAS  Google Scholar 

  12. Jamieson, J. W. & Gartman, A. Defining active, inactive, and extinct seafloor massive sulfide deposits. Mar. Policy 117, 103926 (2020).

    Article  Google Scholar 

  13. Petersen, S. et al. News from the seabed—geological characteristics and resource potential of deep-sea mineral resources. Mar. Policy 70, 175–187 (2016).

    Article  Google Scholar 

  14. Sylvan, J. B., Toner, B. M. & Edwards, K. J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. MBio 3, e00279–00211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Dover, C. L. Inactive sulfide ecosystems in the deep sea: a review. Front. Mar. Sci. 6, 461 (2019).

    Article  Google Scholar 

  16. Hou, J. et al. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome 8, 1–18 (2020).

    Article  Google Scholar 

  17. Kato, S. et al. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough. Appl. Environ. Microbiol. 76, 2968–2979 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Kato, S. et al. Potential for biogeochemical cycling of sulfur, iron and carbon within massive sulfide deposits below the seafloor. Environ. Microbiol. 17, 1817–1835 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Sylvan, J. B. et al. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in Lau Basin. Front. Microbiol. 4, 61 (2013).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  20. Toner, B. M. et al. Mineralogy drives bacterial biogeography of hydrothermally inactive seafloor sulfide deposits. Geomicrobiol. J. 30, 313–326 (2013).

    Article  Google Scholar 

  21. Reeves, E. P. et al. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys. Environ. Microbiol. 16, 3515–3532 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Meier, D. V. et al. Microbial metal‐sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ. Microbiol. 21, 682–701 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong, X. et al. Functional diversity of microbial communities in inactive seafloor sulfide deposits. FEMS Microbiol. Ecol. 97, fiab108 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Orcutt, B. N. et al. Impacts of deep‐sea mining on microbial ecosystem services. Limnol. Oceanogr. 65, 1489–1510 (2020).

    Article  CAS  ADS  Google Scholar 

  25. Van Dover, C. L. et al. Research is needed to inform environmental management of hydrothermally inactive and extinct polymetallic sulfide (PMS) deposits. Mar. Policy 121, 104183 (2020).

    Article  Google Scholar 

  26. Fornari, D. J. et al. The East Pacific Rise between 9 N and 10 N: twenty-five years of integrated, multidisciplinary oceanic spreading center studies. Oceanography 25, 18–43 (2012).

    Article  Google Scholar 

  27. McAllister, S. M. et al. The Fe (II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol. Ecol. 95, fiz015 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kato, S. et al. Genome‐enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep‐sea massive sulfide deposits. Environ. Microbiol. 20, 862–877 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Pan, J. et al. Genome-resolved evidence for functionally redundant communities and novel nitrogen fixers in the deyin-1 hydrothermal field, Mid-Atlantic Ridge. Microbiome 10, 1–20 (2022).

    Google Scholar 

  30. Günter, J., Zubkov, M. V., Yakushev, E., Labrenz, M. & Jürgens, K. High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea. Limnol. Oceanogr. 53, 14–22 (2008).

  31. Herndl, G. J. et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 10, 1939–1953 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McNichol, J. et al. Genus-specific carbon fixation activity measurements reveal distinct responses to oxygen among hydrothermal vent Campylobacteria. Appl. Environ. Microbiol. 88, e02083–02021 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olins, H., Rogers, D., Frank, K., Vidoudez, C. & Girguis, P. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. Geobiology 11, 279–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Bonch-Osmolovskaya, E. A. et al. Activity and distribution of thermophilic prokaryotes in hydrothermal fluid, sulfidic structures, and sheaths of alvinellids (East Pacific Rise, 13 N). Appl. Environ. Microbiol. 77, 2803–2806 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Wirsen, C. O., Jannasch, H. W. & Molyneaux, S. J. Chemosynthetic microbial activity at Mid‐Atlantic Ridge hydrothermal vent sites. J. Geophys. Res. Solid Earth 98, 9693–9703 (1993).

    Article  CAS  Google Scholar 

  37. Tuttle, J., Wirsen, C. & Jannasch, H. Microbial activities in the emitted hydrothermal waters of the Galapagos Rift vents. Mar. Biol. 73, 293–299 (1983).

    Article  Google Scholar 

  38. Mandernack, K. W. & Tebo, B. M. In situ sulfide removal and CO2 fixation rates at deep-sea hydrothermal vents and the oxic/anoxic interface in Framvaren Fjord, Norway. Mar. Chem. 66, 201–213 (1999).

    Article  CAS  Google Scholar 

  39. Wirsen, C. O., Tuttle, J. & Jannasch, H. Activities of sulfur-oxidizing bacteria at the 21 N East Pacific Rise vent site. Mar. Biol. 92, 449–456 (1986).

    Article  CAS  Google Scholar 

  40. McNichol, J. et al. Primary productivity below the seafloor at deep-sea hot springs. Proc. Natl Acad. Sci. USA 115, 6756–6761 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Dekas, A. E. et al. Characterizing chemoautotrophy and heterotrophy in marine archaea and bacteria with single-cell multi-isotope NanoSIP. Front. Microbiol. 10, 2682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Braun, A. et al. Reviews and syntheses: heterotrophic fixation of inorganic carbon-significant but invisible flux in environmental carbon cycling. Biogeosciences 18, 3689–3700 (2021).

    Article  CAS  ADS  Google Scholar 

  43. Wang, F. et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc. Natl Acad. Sci. USA 106, 4840–4845 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289 (2011).

    Article  ADS  Google Scholar 

  45. Sievert, S. M. & Vetriani, C. Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography 25, 218–233 (2012).

    Article  Google Scholar 

  46. House, C. H., Schopf, J. W. & Stetter, K. O. Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org. Geochem. 34, 345–356 (2003).

    Article  CAS  ADS  Google Scholar 

  47. Havig, J. R., Raymond, J., Meyer-Dombard, D. A. R., Zolotova, N. & Shock, E. L. Merging isotopes and community genomics in a siliceous sinter-depositing hot spring. J. Geophys. Res. Biogeosciences 116, G01005 (2011).

    Article  ADS  Google Scholar 

  48. Khachikyan, A. et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl. Environ. Microbiol. 85, e00493–00419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu, S. K. et al. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Proc. Natl Acad. Sci. USA 118, e2102674118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67 (2013).

    Article  Google Scholar 

  51. Neufeld, M., Metaxas, A. & Jamieson, J. W. Non-vent megafaunal communities on the Endeavour and Middle Valley segments of the Juan de Fuca Ridge, Northeast Pacific Ocean. Front. Mar. Sci. 9, 804 (2022).

    Article  Google Scholar 

  52. Beaulieu, S. & Szafranski, K. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields Version 3.4. World Wide Web Electronic Publication (accessed 2020); http://vents-data.interridge.org

  53. Minami, H. & Ohara, Y. The Gondou hydrothermal field in the Ryukyu Arc: a huge hydrothermal system on the flank of a caldera volcano. Geochem. Geophys. Geosyst. 18, 3489–3516 (2017).

    Article  ADS  Google Scholar 

  54. Jamieson, J., Clague, D. & Hannington, M. D. Hydrothermal sulfide accumulation along the Endeavour segment, Juan de Fuca Ridge. Earth Planet. Sci. Lett. 395, 136–148 (2014).

    Article  CAS  ADS  Google Scholar 

  55. Fornari, D. J., Haymon, R. M., Perfit, M. R., Gregg, T. K. & Edwards, M. H. Axial summit trough of the East Pacific Rice 9°–10° N: geological characteristics and evolution of the axial zone on fast spreading mid‐ocean ridge. J. Geophys. Res. Solid Earth 103, 9827–9855 (1998).

    Article  Google Scholar 

  56. Wu, J. N. et al. Extent and volume of lava flows erupted at 9 50′ N, East Pacific Rise in 2005–2006 from autonomous underwater vehicle surveys. Geochem. Geophys. Geosyst. 23, e2021GC010213 (2022).

    Article  MathSciNet  ADS  Google Scholar 

  57. Monteverde, D. R. et al. Distribution of extracellular flavins in a coastal marine basin and their relationship to redox gradients and microbial community members. Environ. Sci. Technol. 52, 12265–12274 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Molari, M., Manini, E. & Dell’Anno, A. Dark inorganic carbon fixation sustains the functioning of benthic deep‐sea ecosystems. Glob. Biogeochem. Cycles 27, 212–221 (2013).

    Article  CAS  ADS  Google Scholar 

  59. McNichol, J. et al. Assessing microbial processes in deep-sea hydrothermal systems by incubation at in situ temperature and pressure. Deep Sea Res. I 115, 221–232 (2016).

    Article  CAS  Google Scholar 

  60. Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single‐cell rates of microbial activity. Environ. Microbiol. 23, 81–98 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Polerecky, L. et al. Look@ NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Parada, A. E. et al. Constraining the composition and quantity of organic matter used by abundant marine Thaumarchaeota. Environ. Microbiol. 25, 689–704 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808 (1999).

    Article  CAS  Google Scholar 

  64. Rosman, K. & Taylor, P. Isotopic compositions of the elements 1997 (Technical Report). Pure Appl. Chem. 70, 217–235 (1998).

    Article  CAS  Google Scholar 

  65. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article  Google Scholar 

  68. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Garber, A. I. et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front. Microbiol. 11, 13 (2020).

    Article  Google Scholar 

  72. Garber, A., Ramirez, G. A., Merino, N., Pavia M. J., McAllister, S. M. MagicLamp: toolkit for annotation of genomic data using discreet and curated HMM sets. MagicLamp, GitHub repository (2023); https://github.com/Arkadiy-Garber/MagicLamp

  73. Sturt, H. F., Summons, R. E., Smith, K., Elvert, M. & Hinrichs, K. U. Intact polar membrane lipids in prokaryotes and sediments deciphered by high‐performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass Spectrom. 18, 617–628 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Meador, T. B., Zhu, C., Elling, F. J., Könneke, M. & Hinrichs, K.-U. Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin. Org. Geochem. 69, 70–75 (2014).

    Article  CAS  ADS  Google Scholar 

  75. Wörmer, L., Lipp, J. S., Schröder, J. M. & Hinrichs, K.-U. Application of two new LC–ESI–MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Org. Geochem. 59, 10–21 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the captain and shipboard crew of the RV Atlantis during the AT42-09 and AT42-21 expeditions and of the RV Roger Revelle during the RR2102 expedition. We are also thankful for the input and hard work of the pilots and crew of the HOV Alvin, ROV Jason and AUV Sentry; the science done for this project would not be possible without the support of and collaboration with University–National Oceanographic Laboratory System operators and vessels and the National Deep Submergence Facility at Woods Hole Oceanographic Institution. This work was supported by grants from the US National Science Foundation to J.B.S. (OCE 1756339), B.M.T. (OCE 1756558), M.K.T. (OCE 1756419), D.J.F. (OCE 1949485) and A.E.D. (NSF CAREER award 2143035). J.B.S. acknowledges support from a Simons Foundation Early Career Investigator in Aquatic Microbial Ecology and Evolution Award. J.J. acknowledges financial support from the Canada Research Chairs program (CRC-2020-001165). S.M. acknowledges funding support from the Natural Sciences and Engineering Research Council of Canada Collaborative Research and Training Experience project in Marine Geodynamics and Georesources program. E.P.R. acknowledges funding support from the University of Bergen Meltzer Fund. We thank Emily Paris in the Dekas Laboratory for performing the ammonium quantification. The Stanford Nano Shared Facilities where the nanoSIMS analyses were conducted is supported in part by the National Science Foundation under award ECCS-2026822. F.S., J.B. and A.M. acknowledge funding from the German Research Foundation (DFG) under Germany’s Excellence Strategy—EXC 2077-390741603. Finally, thank you to T. Meek (Texas A&M University) for providing access to liquid scintillation counting equipment.

Author information

Authors and Affiliations

Authors

Contributions

J.B.S., B.M.T., M.K.T. and A.M.A. conceived the study. A.M.A., J.B.S., J.J., A.E.D. and F.S. wrote the manuscript with input from all authors. D.J.F. contributed site survey information and provided support for field work. A.M.A., R.J., C.P.H., E.P.R. and J.B. performed sample collection. A.M.A. performed carbon fixation measurements and conducted bioinformatic analysis. R.J. contributed scanning electron microscopy images. J.J. and S.M. performed mineralogical analysis. A.E.D. and N.R.M. performed NanoSIMS analysis. F.S. and A.M. performed analysis of TOC and PLFA. C.P.H. performed cell counts. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Amanda M. Achberger or Jason B. Sylvan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Summary list of samples used to measure carbon fixation assimilation rates (14C-bicarbonate) including mineralogical and biological characteristics
Extended Data Table 2 Key marker genes used to identify the presence of carbon fixation pathways in metagenomic datasets
Extended Data Table 3 Stable carbon isotopic composition (δ13C) of the major polar lipid fatty acids (PLFA), analyzed as FAMEs (fatty acid methyl esters)
Extended Data Table 4 Sample name reference table showing the original sample identifier assigned shipboard at the time of collection and the simplified sample identifier used in this manuscript

Extended Data Fig. 1

a, Representative samples collected from inactive and active hydrothermal vent deposits including photographs of bulk samples (A1-C1) as well as thin section micrographs viewed with transmitted (A2-C2) and reflected light (A3-C3); Anh, anhydrite; Atc, atacamite; Cpy,chalcopyrite; Fe-oxy, iron oxyhydroxide; Mc, marcasite, Py, pyrite; Ps, pore space. b, Bulk minerology of samples. Black denotes iron oxyhydroxides, Yellow denotes sulfides, and Blue denotes sulfates. c, Photograph of representative subdivided inactive vent sample from Lucky’s Mound used in carbon assimilation assays showing the three regions of interest (inner conduit, middle region, and outer crust).

Extended Data Fig. 2

Assimilation of 14C−bicarbonate by microbial communities (shown in Fig. 1) from active (n = 8; biologically independent samples) and inactive (n = 8) hydrothermal vent deposits, normalized for cell abundance (Extended Data Table 1). Black line indicated mean value.

Extended Data Fig. 3

NanoSIMS comparison of uptake of 13C−bicarbonate a, and 15N−ammonium b, in individual cells (gray dots) from a single rock sample at each of AlvinellidRock (active vent deposit) and Mvent (inactive vent deposit) after 2 days of incubation. Box plots indicating the median, upper, and lower quartiles (but, appearing as lines due to mostly low activity/inactive cells) are overlaid in black. Numbers above the plots indicate the number of regions of interest (putative cells) analyzed, and asterisks indicate a statistically significant difference (p < 0.05) using a two-sided, Mann-Whitney (MW) test with a Bonferroni correction for multiple hypotheses.

Extended Data Fig. 4

Relative uptake of 13C-bicarbonate and 15N−ammonium in individual cells (black circles) measured by nanoSIMS from AlvinellidRock (active vent deposit) and Mvent (inactive vent deposit) after 2 days of incubation. Data is replotted from main text Fig. 3 with truncated axes to better display data points around the origin (lower activity cells). Based on their relative assimilation of each substrate, the regions below the 2:1 line include chemoautotrophic cells, the region above the 2:1 line includes heterotrophic cells, and the regions to the left (x-axis) or below (y-axis) the dashed lines include cells below the detection limit of uptake for that substrate. Regions are defined as in Dekas et al.41.

Extended Data Fig. 5

Abundance of key genes involved in total carbon fixation pathways and potential metabolic pathways for redox reactions annotated based on HMMs using MagicLamp72 (Supplementary Table 1).

Extended Data Fig. 6

Summary of published carbon fixation rates from active hydrothermal vent mineral deposits (black; right-axis) and hydrothermal vent fluids (grey; left-axis). The blue and orange dots denote the highest and lowest reported rates, respectively.

Supplementary information

Reporting Summary

Supplementary Tables 1–3

LithoGenie HMM list as implemented within MagicLamp (taken from https://github.com/Arkadiy-Garber/MagicLamp). List of metagenome-assembled genomes from inactive hydrothermal vent deposits showing the presence (indicated with a +) of key genes for the carbon fixation pathways examined (Extended Data Table 2). Cell-normalized carbon fixation rate mean and ranges from this work and other deep-sea environments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achberger, A.M., Jones, R., Jamieson, J. et al. Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nat Microbiol 9, 657–668 (2024). https://doi.org/10.1038/s41564-024-01599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01599-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology