Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterostructures coupling ultrathin metal carbides and chalcogenides

Abstract

Non-layered transition metal carbides (TMCs) and layered transition metal dichalcogenides (TMDs) are two well-studied material families that have individually received considerable attention over the past century. In recent years, with the shift towards two-dimensional materials and heterostructures, a field has emerged that is focused on the structure and properties of TMC/TMD heterostructures, which through chemical conversion exhibit diverse types of heterostructure configuration that host coupled 2Dā€“3D interfaces, giving rise to exotic properties. In this Review, we highlight experimental and computational efforts to understand the routes to fabricate TMC/TMD heterostructures. Furthermore, we showcase how controlling these heterostructures can lead to emergent electronic transport, optical properties and improved catalytic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Woodworking for TMC/TMD heterostructures.
Fig. 2: Timeline of the synthesis of TMCs, TMDs and TMD/TMC heterostructures.
Fig. 3: Emergent properties of TMC/TMD heterostructures.
Fig. 4: Highlights of UThTMC and TMC/TMD heterostructures realized from group IV, V and VI transition metals.

Similar content being viewed by others

References

  1. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170ā€“181 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550ā€“560 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248ā€“4253 (2011).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Shan, G., Ding, Z. & Gogotsi, Y. Two-dimensional MXenes and their applications. Front. Phys. 18, 13604 (2023).

    ArticleĀ  Google ScholarĀ 

  5. Hwu, H. H. & Chen, J. G. Surface chemistry of transition metal carbides. Chem. Rev. 105, 185ā€“212 (2005).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135ā€“1141 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Wang, C. et al. Transport properties of topological semimetal tungsten carbide in the 2D limit. Adv. Electron. Mater. 5, 1800839 (2019).

    Google ScholarĀ 

  8. Zhang, C. et al. Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 499, 143998 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Hao, M. et al. Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Phys. Rev. B 101, 115422 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Wang, Z. et al. Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29, 1700364 (2017).

    ArticleĀ  Google ScholarĀ 

  11. Suryaprakash Rao, P. & Prasad, P. M. Direct synthesis of Mo2C by molybdenite-CO reaction in the presence of lime. Mater. Trans. 34, 1229ā€“1233 (1993).

    ArticleĀ  Google ScholarĀ 

  12. Suryaprakash Rao, P., Mankhand, T. R. & Prasad, P. M. Kinetics of formation of molybdenum carbide (Mo2C) by reaction between carbon monoxide and molybdenite or molybdenum. Mater. Trans. JIM 37, 239ā€“244 (1996).

    ArticleĀ  Google ScholarĀ 

  13. Hara, Y., Minami, N. & Itagaki, H. Synthesis and characterization of high-surface area tungsten carbides and application to electrocatalytic hydrogen oxidation. Appl. Catal. A 323, 86ā€“93 (2007).

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Chang, H.-Q., Zhang, G.-H. & Chou, K.-C. Topochemical synthesis of two-dimensional molybdenum carbide (Mo2C) via Na2CO3-assisted carbothermal reduction of 2H-MoS2. Mater. Chem. Phys. 244, 122713 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Rothschild, A. et al. Encapsulation of WC within 2H-WS2 inorganic fullerene-like cages. Chem. Commun. 2, 363ā€“364 (1999).

    ArticleĀ  Google ScholarĀ 

  16. Xiao, Y. et al. Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Composites B 193, 108004 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Tang, C. et al. Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution. ACS Catal. 5, 6956ā€“6963 (2015).

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Zhang, K. et al. MoS2 nanosheet/Mo2C-embedded N-doped carbon nanotubes: synthesis and electrocatalytic hydrogen evolution performance. J. Mater. Chem. A 2, 18715ā€“18719 (2014).

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Shao, M. et al. Carbonized MoS2: super-active co-catalyst for highly efficient water splitting on CdS. ACS Sustain Chem. Eng. 7, 4220ā€“4229 (2019).

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Nguyen, T. P. et al. Strategy for controlling the morphology and work function of W2C/WS2 nanoflowers. J. Alloy. Compd 829, 154582 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Nguyen, T. P. et al. Facile synthesis of W2C@WS2 alloy nanoflowers and their hydrogen generation performance. Appl. Surf. Sci. 504, 144389 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Nguyen, T. P. & Kim, I. T. W2C/WS2 alloy nanoflowers as anode materials for lithium-ion storage. Nanomaterials 10, 1336 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Zhang, F. et al. Superconductivity enhancement in phase-engineered molybdenum carbide/disulfide vertical heterostructures. Proc. Natl Acad. Sci. USA 117, 19685ā€“19693 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Wu, J. et al. Growth of molybdenum carbideā€“graphene hybrids from molybdenum disulfide atomic layer template. Adv. Mater. Interf. 4, 4ā€“9 (2017).

    ArticleĀ  Google ScholarĀ 

  25. Hussain, S. et al. MoS2@X2C (X = Mo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances. Chem. Eng. J. 421, 127843 (2021).

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Mathialagan, S. & Priya, P. G. Mo2Cā€“MoS2 embedded reduced graphene oxide nanohybrid: epitaxial synthesis of Mo2C to augment the lithium storage properties of MoS2. Carbon 158, 756ā€“765 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Li, X. et al. In situ synthesis of carbon nanotube hybrids with alternate MoC and MoS2 to enhance the electrochemical activities of MoS2. Nano Lett. 15, 5268ā€“5272 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Hsu, W. K. et al. WxMoyCzS2 nanotubes. Carbon 39, 1103ā€“1116 (2001).

    ArticleĀ  Google ScholarĀ 

  29. Yang, S. et al. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution. J. Catal. 371, 20ā€“26 (2019).

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Lin, J. F. et al. Synthesis of tungsten carbide and tungsten disulfide on vertically aligned multi-walled carbon nanotube forests and their application as non-Pt electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14609ā€“14616 (2015).

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Wiesel, I., Popovitz-Biro, R. & Tenne, R. Encapsulation of Mo2C in MoS2 inorganic fullerene-like nanoparticles and nanotubes. Nanoscale 5, 1499ā€“1502 (2013).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Jia, L. et al. Structure design of MoS2@Mo2C on nitrogen-doped carbon for enhanced alkaline hydrogen evolution reaction. J. Mater. Sci. 55, 16197ā€“16210 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Zhao, Z. et al. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 7, 7312ā€“7318 (2017).

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Wang, F. et al. Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis. Adv. Funct. Mater. 27, 1ā€“7 (2017).

    Google ScholarĀ 

  35. Jeon, J. et al. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide. ACS Nano 12, 338ā€“346 (2018).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Choi, S. et al. Scalable two-dimensional lateral metal/semiconductor junction fabricated with selective synthetic integration of transition-metal-carbide (Mo2C)/-dichalcogenide (MoS2). ACS Appl. Mater. Interf. 11, 47190ā€“47196 (2019).

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Tiwari, A. P. et al. Lattice strain formation through spin-coupled shells of MoS2 on Mo2C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts. Adv. Mater. Interfaces 6, 1900948 (2019).

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Meng, L., Sun, Q., Wang, J. & Ding, F. Molecular dynamics simulation of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C. 116, 6097ā€“6102 (2012).

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Xu, Z. et al. Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate. npj Comput. Mater. 6, 14 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Shibuta, Y. et al. Ab initio molecular dynamics simulation of dissociation of methane on nickel(111) surface: unravelling initial stage of graphene growth via a CVD technique. Chem. Phys. Lett. 565, 92ā€“97 (2013).

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Nayir, N. et al. Atomic-scale probing of defect-assisted Ga intercalation through graphene using ReaxFF molecular dynamics simulations. Carbon 190, 276ā€“290 (2022).

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396ā€“9409 (2001).

    ArticleĀ  Google ScholarĀ 

  43. Han, Y. et al. Development, applications and challenges of ReaxFF reactive force field in molecular simulations. Front. Chem. Sci. Eng. 10, 16ā€“38 (2016).

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. van Duin, A. C. T. et al. Modeling for structural engineering and synthesis of two-dimensional WSe2 using a newly developed Reaxff reactive force field. J. Phys. Chem. C 124, 28285ā€“28297 (2020).

    ArticleĀ  Google ScholarĀ 

  45. He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

    ArticleĀ  Google ScholarĀ 

  46. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moirĆ© heterostructure. Nature 580, 472ā€“477 (2020).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Bai, Y. et al. Excitons in strain-induced one-dimensional moirĆ© potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068ā€“1073 (2020).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Tong, Q. et al. Topological mosaics in moirĆ© superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356ā€“362 (2017).

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Mattevi, C. & Sokolikova, M. S. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 49, 3952ā€“3980 (2020).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  50. Turker, F. et al. CVD synthesis and characterization of thin Mo2C crystals. J. Am. Ceram. Soc. 103, 5586ā€“5593 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Geng, D. C. et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mat. 29, 1700072 (2017).

    ArticleĀ  Google ScholarĀ 

  52. Hugosson, H. W. et al. Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide. J. Appl. Phys. 86, 3758ā€“3767 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Kurlov, A. S. & Gusev, A. I. Tungsten Carbides: Structure, Properties and Application in Hardmetals SSMaterials Vol. 184 (Springer, 2013).

  54. Liang, T., Phillpot, S. R. & Sinnott, S. B. Parametrization of a reactive many-body potential for Moā€“S systems. Phys. Rev. B 79, 245110 (2009).

    ArticleĀ  Google ScholarĀ 

  55. Nayir, N. et al. Theoretical modeling of edge-controlled growth kinetics and structural engineering of 2D-MoSe2. Mater. Sci. Eng. B 271, 115263 (2021).

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Ostadhossein, A. et al. ReaxFF reactive force-field study of molybdenum disulfide (MoS2). J. Phys. Chem. Lett. 8, 631ā€“640 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Nayir, N. et al. A ReaxFF force field for 2D-WS2 and its interaction with sapphire. J. Phys. Chem. C 125, 17950ā€“17961 (2021).

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. GĆ³mez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268ā€“276 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Unke, O. T. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678ā€“3693 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316ā€“330 (2015).

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Willens, R. H., Buehler, E. & Matthias, B. T. Superconductivity of the transition-metal carbides. Phys. Rev. 159, 327ā€“330 (1967).

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Morton, N. et al. Superconductivity of molybdenum and tungsten carbides. J. Less Common Met. 25, 97ā€“106 (1971).

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Matthias, B. T. & Hulm, J. K. A search for new superconducting compounds. Phys. Rev. 87, 799ā€“806 (1952).

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Hardy, G. F. & Hulm, J. K. The superconductivity of some transition metal compounds. Phys. Rev. 93, 1004ā€“1016 (1954).

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Zhang, Z. et al. Layer-stacking, defects, and robust superconductivity on the Mo-terminated surface of ultrathin Mo2C flakes grown by CVD. Nano Lett. 19, 3327ā€“3335 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Gedeon, H. et al. Defect and interlayer coupling tuned quasiparticle scattering in 2D disordered Mo2C superconducting microcrystals. J. Phys. D 53, 434002 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Liu, Z. et al. Phase transition and in situ construction of lateral heterostructure of 2D superconducting Ī±/Ī² Mo2C with sharp interface by electron beam irradiation. Nanoscale 9, 7501ā€“7507 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Fan, Y. et al. Distinct superconducting properties and hydrostatic pressure effects in 2D Ī±- and Ī²-Mo2C crystal sheets. NPG Asia Mater. 12, 60 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  69. Zhang, J. et al. Superconductivity and high-pressure performance of 2D Mo2C crystals. J. Phys. Chem. Lett. 12, 2219ā€“2225 (2021).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Huang, A. et al. Multiple topological electronic phases in superconductor MoC. Phys. Rev. Mater. 2, 54205 (2018).

    ArticleĀ  CASĀ  Google ScholarĀ 

  71. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. De La Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551ā€“3556 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid devices. Nat. Phys. 16, 718ā€“724 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  75. Das, S., Schulman, D. S. & Arnold, A. J. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037ā€“3058 (2018).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  76. Fujii, R., Gotoh, Y., Liao, M. Y., Tsuji, H. & Ishikawa, J. Work function measurement of transition metal nitride and carbide thin films. Vacuum 80, 832ā€“835 (2006).

    ArticleĀ  CASĀ  Google ScholarĀ 

  77. Jeon, J. et al. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Funct. Mater. 29, 1905384 (2019).

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. Liu, Y., Kelly, T. G., Chen, J. G. & Mustain, W. E. Metal carbides as alternative electrocatalyst supports. ACS Catal. 3, 1184ā€“1194 (2013).

    ArticleĀ  CASĀ  Google ScholarĀ 

  79. Weigert, E. C., Esposito, D. V. & Chen, J. G. Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts. J. Power Sources 193, 501ā€“506 (2009).

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Wirth, S., Harnisch, F., Weinmann, M. & Schrƶder, U. Comparative study of IVBā€“VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. Appl. Catal. B 126, 225ā€“230 (2012).

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Kimmel, Y. C., Xu, X., Yu, W., Yang, X. & Chen, J. G. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 4, 1558ā€“1562 (2014).

    ArticleĀ  CASĀ  Google ScholarĀ 

  82. Li, J. et al. High-performance hydrogen evolution at a MoSe2-Mo2C seamless heterojunction enabled by efficient charge transfer. J. Mater. Chem. A 8, 6692ā€“6698 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. Zhang, F. et al. Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 5, eaav5003 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Wu, J., Huang, Y., Ye, W. & Li, Y. CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 1700194 (2017).

    ArticleĀ  Google ScholarĀ 

  85. Zhang, Q., Pastor-PĆ©rez, L., Gu, S. & Reina, T. R. Transition metal carbides (TMCS) catalysts for gas phase CO2 upgrading reactions: a comprehensive overview. Catalysts 10, 955 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  86. FĆ¼hrer, M., Van Haasterecht, T. & Bitter, J. H. Molybdenum and tungsten carbides can shine too. Catal. Sci. Technol. 10, 6089ā€“6097 (2020).

    ArticleĀ  Google ScholarĀ 

  87. Cao, J. et al. Realization of 2D crystalline metal nitrides via selective atomic substitution. Sci. Adv. 6, eaax8784 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Li, T. et al. Epitaxial atomic substitution for MoS2-MoN heterostructure synthesis. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.2c16425 (2022).

  89. Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491ā€“8494 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  90. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320ā€“2325 (2012).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. GutiĆ©rrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447ā€“3454 (2013).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was primarily supported by the Basic Office of Science of the Department of Energy under award number DE-SC0018025. Y.L. acknowledges partial support from the Shenzhen Basic Research Project (grant number JCYJ20220530142816037) and the Guangdong Provincial Natural Science Foundation of China (grant number 2022A1515110936). Crystal structures generated using CrystalMaker, CrystalMaker Software Ltd, Oxford, England (www.crystalmaker.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan B. Sinnott or Mauricio Terrones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Babak Anasori and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sredenschek, A.J., Sanchez, D.E., Wang, J. et al. Heterostructures coupling ultrathin metal carbides and chalcogenides. Nat. Mater. 23, 460ā€“469 (2024). https://doi.org/10.1038/s41563-024-01827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01827-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing