Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs

Abstract

Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry changes a critical step in developing future technologies that rely on such control. Topological materials, like topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second harmonic generation spectroscopy as a sensitive probe of symmetry changes, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of the second harmonic pattern in TaAs following photocurrent excitation.
Fig. 2: Isolated photoinduced change in the second harmonic pattern following optical excitation.
Fig. 3: Dynamics of selected fit coefficients in the second harmonic pattern.
Fig. 4: Exploiting the polarization dependence of photocurrents to control the degree of symmetry breaking.

Similar content being viewed by others

Data availability

Relevant material, data and associated protocols, including code and scripts, are curated and archived at the Materials Data Facility (https://doi.org/10.18126/lram-eh2d) and made available to the public.

References

  1. Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405 (1995).

    Article  Google Scholar 

  2. Sachdev, S. Topological order, emergent gauge fields, and Fermi surface reconstruction. Rep. Prog. Phys. 82, 014001 (2019).

    Article  CAS  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  Google Scholar 

  4. Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361 (2015).

    Article  CAS  Google Scholar 

  5. Gao, H., Venderbos, J. W., Kim, Y. & Rappe, A. M. Topological semimetals from first principles. Annu. Rev. Mater. Res. 49, 153 (2019).

    Article  CAS  Google Scholar 

  6. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  7. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  CAS  Google Scholar 

  8. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  9. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).

    Article  CAS  Google Scholar 

  10. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728 (2015).

    Article  CAS  Google Scholar 

  11. Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27 (2015).

    Article  Google Scholar 

  12. Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140 (2016).

    Article  CAS  Google Scholar 

  13. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    CAS  Google Scholar 

  14. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  15. Torchinsky, D. H. & Hsieh, D. in Magnetic Characterization Techniques for Nanomaterials (ed. Kumar, C. S.) 1–49 (Springer, 2017).

  16. Zhao, L., Torchinsky, D., Harter, J., de la Torre, A. & Hsieh, D. in Encyclopedia of Modern Optics 2nd edn (eds Guenther, B. D. & Steel, D. G.) 207–226 (Elsevier, 2018).

  17. Zhao, L. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32 (2016).

    Article  CAS  Google Scholar 

  18. Harter, J. W., Zhao, Z. Y., Yan, J.-Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7. Science 356, 295 (2017).

    Article  CAS  Google Scholar 

  19. Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702 (2007).

    Article  CAS  Google Scholar 

  20. Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42 (2020).

    Article  CAS  Google Scholar 

  21. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842 (2017).

    Article  CAS  Google Scholar 

  22. Sirica, N. et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys. Rev. Lett. 122, 197401 (2019).

    Article  CAS  Google Scholar 

  23. Gao, Y. et al. Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat. Commun. 11, 720 (2020).

    Article  CAS  Google Scholar 

  24. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350 (2016).

    Article  Google Scholar 

  25. Patankar, S. et al. Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs. Phys. Rev. B 98, 165113 (2018).

    Article  CAS  Google Scholar 

  26. Osterhoudt, G. B. et al. Colossal photovoltaic effect driven by the singular Berry curvature in a Weyl semimetal. Nat. Mater. 18, 471 (2019).

    Article  CAS  Google Scholar 

  27. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476 (2019).

    Article  CAS  Google Scholar 

  28. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337 (2000).

    Article  CAS  Google Scholar 

  29. Li, Z. et al. Second harmonic generation in the Weyl semimetal TaAs from a quantum kinetic equation. Phys. Rev. B 97, 085201 (2018).

    Article  CAS  Google Scholar 

  30. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, 1501524 (2016).

    Article  Google Scholar 

  31. Sotome, M. et al. Spectral dynamics of shift current in ferroelectric semiconductor SbSI. Proc. Natl Acad. Sci. USA 116, 1929 (2019).

    Article  CAS  Google Scholar 

  32. Parker, D. E., Morimoto, T., Orenstein, J. & Moore, J. E. Diagrammatic approach to nonlinear optical response with application to Weyl semimetals. Phys. Rev. B 99, 045121 (2019).

    Article  CAS  Google Scholar 

  33. Weber, C. P. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys. 129, 070901 (2021).

    Article  CAS  Google Scholar 

  34. Khurgin, J. B. Current induced second harmonic generation in semiconductors. Appl. Phys. Lett. 67, 1113 (1995).

    Article  CAS  Google Scholar 

  35. Ruzicka, B. A. et al. Second-harmonic generation induced by electric currents in GaAs. Phys. Rev. Lett. 108, 077403 (2012).

    Article  Google Scholar 

  36. Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27 (2019).

    Article  CAS  Google Scholar 

  37. Zong, A. et al. Dynamical slowing-down in an ultrafast photoinduced phase transition. Phys. Rev. Lett. 123, 097601 (2019).

    Article  CAS  Google Scholar 

  38. Li, J. J., Chen, J., Reis, D. A., Fahy, S. & Merlin, R. Optical probing of ultrafast electronic decay in Bi and Sb with slow phonons. Phys. Rev. Lett. 110, 047401 (2013).

    Article  CAS  Google Scholar 

  39. Murray, E. D. & Fahy, S. First-principles calculation of femtosecond symmetry-breaking atomic forces in photoexcited bismuth. Phys. Rev. Lett. 114, 055502 (2015).

    Article  CAS  Google Scholar 

  40. O’Mahony, S. M. et al. Ultrafast relaxation of symmetry-breaking photo-induced atomic forces. Phys. Rev. Lett. 123, 087401 (2019).

    Article  Google Scholar 

  41. Soifer, H. et al. Band-resolved imaging of photocurrent in a topological insulator. Phys. Rev. Lett. 122, 167401 (2019).

    Article  CAS  Google Scholar 

  42. Takasan, K., Morimoto, T., Orenstein, J. & Moore, J. E. Current-induced second harmonic generation in inversion-symmetric Dirac and Weyl semimetals. Preprint at arXiv https://arxiv.org/abs/2007.08887 (2020).

  43. Sheu, Y. M., Trugman, S. A., Yan, L., Jia, Q. X., Taylor, A. J. & Prasankumar, R. P. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure. Nat. Commun. 5, 5832 (2014).

    Article  CAS  Google Scholar 

  44. Xu, B. et al. Optical spectroscopy of the Weyl semimetal TaAs. Phys. Rev. B 93, 121110 (2016).

    Article  Google Scholar 

  45. Ozaki, T. Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003).

    Article  Google Scholar 

  46. Morrison, I., Bylander, D. M. & Kleinman, L. Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential. Phys. Rev. B 47, 6728–6731 (1993).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Theurich, G. & Hill, N. A. Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials. Phys. Rev. B 64, 073106 (2001).

    Article  Google Scholar 

  49. Lee, C.-C. et al. Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP. Phys. Rev. B 92, 235104 (2015).

    Article  Google Scholar 

  50. Lee, C.-C., Lee, Y.-T., Fukuda, M. & Ozaki, T. Tight-binding calculations of optical matrix elements for conductivity using nonorthogonal atomic orbitals: anomalous Hall conductivity in bcc Fe. Phys. Rev. B 98, 115115 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed at the Center for Integrated Nanotechnologies at Los Alamos National Laboratory, a US Department of Energy, Office of Basic Energy Sciences user facility, under user proposal nos 2017BC0064 and 2019AU0167. Use of the Linac Coherent Light Source, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. N.S. and R.P.P. gratefully acknowledge the support of the US Department of Energy through the Los Alamos National Laboratory LDRD programme. P.P.O., J.-X.Z. and D.A.Y. are supported by the Center for Advancement of Topological Semimetals, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences, through the Ames Laboratory under contract no. DE-AC02-07CH11358. T.A.C. and M.Z.H. acknowledge support from the US Department of Energy under grant DE-FG-02-05ER46200. Work at University of California, Los Angeles was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0021117 for single-crystal growth and characterization. C.H. thanks the support of the Julian Schwinger Fellowship at University of California, Los Angeles. M.S.S. acknowledges support from the National Science Foundation under grant no. DMR-1664842. C.-C.L. acknowledges the Ministry of Science and Technology of Taiwan for financial support under contract no. MOST 108-2112-M-032-010-MY2. T.A.C. was supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1656466. M.T. and S.W.T. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences through the Division of Materials Sciences and Engineering under contract no. DE-AC02-76SF00515. We thank Y.-M. Sheu for the helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

TaAs single crystals were grown and characterized by L.X.Z., G.F.C., B.X., R.Y., B.S., C.H., N.N. and X.G.Q., with additional sample characterization and physical insights provided by T.A.C. and M.Z.H.; N.S. and Y.M.D. performed the TR-SHG experiments with help from M.-C.L., P.P. and L.T.M.; N.S., S.W.T., M.T. and R.P.P. performed the time-resolved X-ray diffraction experiments with help from Linac Coherent Light Source staff. The data were analysed by N.S., P.P.O. and M.S.S. with a detailed symmetry analysis performed by P.P.O. and M.S.S. Ab initio calculations were carried out by C.-C.L. and H.L. with additional insight provided by J.-X.Z. The manuscript was written by N.S., P.P.O., M.S.S. and R.P.P. with added contributions from S.A.T., A.J.T. and D.A.Y.

Corresponding authors

Correspondence to N. Sirica or R. P. Prasankumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Liuyan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–4 and Discussion Sections I–XII.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirica, N., Orth, P.P., Scheurer, M.S. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022). https://doi.org/10.1038/s41563-021-01126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01126-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing