Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural evolution of titanium dioxide during reduction in high-pressure hydrogen

Abstract

The excellent photocatalytic properties of titanium oxide (TiO2) under ultraviolet light have long motivated the search for doping strategies capable of extending its photoactivity to the visible part of the spectrum. One approach is high-pressure and high-temperature hydrogenation, which results in reduced ‘black TiO2’ nanoparticles with a crystalline core and a disordered shell that absorbs visible light. Here we elucidate the formation mechanism and structural features of black TiO2 using first-principles-validated reactive force field molecular dynamics simulations of anatase TiO2 surfaces and nanoparticles at high temperature and under high hydrogen pressures. Simulations reveal that surface oxygen vacancies created upon reaction of H2 with surface oxygen atoms diffuse towards the bulk material but encounter a high barrier for subsurface migration on {001} facets of the nanoparticles, which initiates surface disordering. Besides confirming that the hydrogenated amorphous shell has a key role in the photoactivity of black TiO2, our results provide insight into the properties of the disordered surface layers that are observed on regular anatase nanocrystals under photocatalytic water-splitting conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface stability in H2 and mixed H2/H2O atmosphere from ab initio thermodynamics calculations.
Fig. 2: Time evolution of the reduction process in slabs exposing different surfaces.
Fig. 3: Diffusion and distribution of oxygen vacancies in slabs exposing different surfaces.
Fig. 4: Reduction and disordering of a spherical nanoparticle during and after high-pressure hydrogenation.
Fig. 5: Spatial distribution of oxygen vacancies and surface disordering after hydrogenation.
Fig. 6: Effects of hydrogenation on the electronic DOS.

Similar content being viewed by others

References

  1. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  CAS  Google Scholar 

  2. Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

    Article  CAS  Google Scholar 

  3. Chen, X. & Selloni, A. Introduction: titanium dioxide (TiO2) nanomaterials. Chem. Rev. 114, 9281–9282 (2014).

    Article  CAS  Google Scholar 

  4. Rajh, T., Dimitrijevic, N. M., Bissonnette, M., Koritarov, T. & Konda, V. Titanium dioxide in the service of the biomedical revolution. Chem. Rev. 114, 10177–10216 (2014).

    Article  CAS  Google Scholar 

  5. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  6. Di Valentin, C., Pacchioni, G. & Selloni, A. Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543–20552 (2009).

    Article  Google Scholar 

  7. Zuo, F. et al. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856–11857 (2010).

    Article  CAS  Google Scholar 

  8. Zuo, F. et al. Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed. 51, 6223–6226 (2012).

    Article  CAS  Google Scholar 

  9. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  Google Scholar 

  10. Chen, X., Liu, L. & Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).

    Article  CAS  Google Scholar 

  11. Naldoni, A. et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600–7603 (2012).

    Article  CAS  Google Scholar 

  12. Liu, N. et al. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett. 14, 3309–3313 (2014).

    Article  CAS  Google Scholar 

  13. Zhou, W. et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280–9283 (2014).

    Article  CAS  Google Scholar 

  14. Liu, N. et al. Hydrogenated anatase: strong photocatalytic dihydrogen evolution without the use of a co-catalyst. Angew. Chem. Int. Ed. 53, 14201–14205 (2014).

    Article  CAS  Google Scholar 

  15. Zhang, L., Miller, B. K. & Crozier, P. A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13, 679–684 (2013).

    Article  Google Scholar 

  16. Lu, Y. et al. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. (in the press).

  17. Van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article  Google Scholar 

  18. Liang, T. et al. Reactive potentials for advanced atomistic simulations. Annu. Rev. Mater. Res. 43, 109–129 (2013).

    Article  CAS  Google Scholar 

  19. Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).

    Article  CAS  Google Scholar 

  20. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

  21. Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 35406 (2001).

    Article  Google Scholar 

  22. Zhao, X., Selcuk, S. & Selloni, A. Formation and stability of reduced TiOx layers on anatase TiO2(101): identification of a novel Ti2O3 phase. Phys. Rev. Mater. 2, 15801 (2018).

    Article  CAS  Google Scholar 

  23. Aschauer, U. & Selloni, A. Hydrogen interaction with the anatase TiO2(101) surface. Phys. Chem. Chem. Phys. 14, 16595–16602 (2012).

    Article  CAS  Google Scholar 

  24. Gong, X.-Q., Selloni, A., Batzill, M. & Diebold, U. Steps on anatase TiO2(101). Nat. Mater. 5, 665–670 (2006).

    Article  CAS  Google Scholar 

  25. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article  CAS  Google Scholar 

  26. Yu, J., Low, J., Xiao, W., Zhou, P. & Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 136, 8839–8842 (2014).

    Article  CAS  Google Scholar 

  27. Tachikawa, T., Yamashita, S. & Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011).

    Article  CAS  Google Scholar 

  28. De Angelis, F., Di Valentin, C., Fantacci, S., Vittadini, A. & Selloni, A. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114, 9708–9753 (2014).

    Article  Google Scholar 

  29. Scheiber, P. et al. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 109, 136103 (2012).

    Article  Google Scholar 

  30. Cheng, H. & Selloni, A. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2 (101). J. Chem. Phys. 131, 1–10 (2009).

    Google Scholar 

  31. Claus, J., Leonhardt, M. & Maier, J. Tracer diffusion and chemical diffusion of oxygen in acceptor doped SrTiO3. J. Phys. Chem. Solids 61, 1199–1207 (2000).

    Article  CAS  Google Scholar 

  32. Barnabel, V. I. & Bogomolov, V. N. Diffusion of defects in rutile during its partial reduction in a vacuum. Sov. Phys. Solid State 11, 2160 (1970).

    Google Scholar 

  33. Barnard, A. S. & Curtiss, L. A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261–1266 (2005).

    Article  CAS  Google Scholar 

  34. Asahi, R., Taga, Y., Mannstadt, W. & Freeman, A. J. Electronic and optical properties of anatase TiO2. Phys. Rev. B 61, 7459–7465 (2000).

    Article  CAS  Google Scholar 

  35. Yang, H. G. et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008).

    Article  CAS  Google Scholar 

  36. Liu, G. et al. Titanium dioxide crystals with tailored facets. Chem. Rev. 114, 9559–9612 (2014).

    Article  CAS  Google Scholar 

  37. Wang, G. et al. Computational and photoelectrochemical study of hydrogenated bismuth vanadate. J. Phys. Chem. C. 117, 10957–10964 (2013).

    Article  CAS  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  39. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  40. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  41. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  42. Burgess, D. R. in NIST Chemistry WebBook (eds Linstrom, P. J. & Mallard, W.G.) (NIST, 2017); https://doi.org/10.18434/T4D303

  43. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  44. Aktulga, H. M., Fogarty, J. C., Pandit, S. A. & Grama, A. Y. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput. 38, 245–259 (2012).

    Article  Google Scholar 

  45. Kim, S. Y. et al. Development of a ReaxFF reactive force field for titanium dioxide/water systems. Langmuir 29, 7838–7846 (2013).

    Article  CAS  Google Scholar 

  46. Huang, L., Gubbins, K. E., Li, L. & Lu, X. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations. Langmuir 30, 14832–14840 (2014).

    Article  CAS  Google Scholar 

  47. Raju, M., Van Duin, A. C. T. & Fichthorn, K. A. Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics. Nano Lett. 14, 1836–1842 (2014).

    Article  CAS  Google Scholar 

  48. Tuckerman, M. E., Alejandre, J., López-Rendón, R., Jochim, A. L. & Martyna, G. J. A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble. J. Phys. A. 39, 5629–5651 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DoE-BES, the Division of Chemical Sciences, Geosciences and Biosciences under award DE-FG02-12ER16286. We used the resources of the National Energy Research Scientific Computing Center (DoE contract number DE-AC02-05CH11231). We also acknowledge use of the TIGRESS High Performance Computer Center at Princeton University.

Author information

Authors and Affiliations

Authors

Contributions

A.S. initiated and supervised this research project. S.S. designed the models and the computational approaches, and performed the simulations, their analysis and visualization. X.Z. performed and analysed the DFT cluster calculations of the electronic properties. All authors contributed to discussions and writing the manuscript.

Corresponding author

Correspondence to Sencer Selcuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Supplementary Figures 1–18, Supplementary References 1–9

Supplementary Video 1

Surface Reduction

Supplementary Video 2

VO dynamics

Supplementary Video 3

Amorphization Dynamics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selcuk, S., Zhao, X. & Selloni, A. Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nature Mater 17, 923–928 (2018). https://doi.org/10.1038/s41563-018-0135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0135-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing