Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron–phonon interaction in efficient perovskite blue emitters

Abstract

Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron–phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron–phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin–lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron–phonon interactions. Designing crystal structures with electron–phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Luminescence mechanism of different blue emitters.
Fig. 2: Atomic structure and photophysical properties of single-crystal reduced-dimensional blue-emitting perovskites.
Fig. 3: Electron–phonon coupling in PhC2 and C4.
Fig. 4: Phonon properties of 2D blue emitters.

Similar content being viewed by others

References

  1. Forrest, S. R. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  Google Scholar 

  2. Yang, X., Xu, X. & Zhou, G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. J. Mater. Chem. C. Mater. Opt. Electron. Devices 3, 913–944 (2015).

    Article  Google Scholar 

  3. Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article  Google Scholar 

  4. Nakamura, S., Pearton, S. & Fasol, G. The Blue Laser Diode 1–5 (Springer, Berlin, 2000).

  5. Nanishi, Y. Nobel Prize in Physics: the birth of the blue LED. Nat. Photon. 8, 884–886 (2014).

    Article  Google Scholar 

  6. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 933–933 (2013).

    Article  Google Scholar 

  7. Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photon. 10, 253–257 (2016).

    Article  Google Scholar 

  8. Reshchikov, M. A. & Korotkov, R. Y. Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Phys. Rev. B 64, 115205 (2001).

    Article  Google Scholar 

  9. Viswanath, A. K., Lee, J. I., Kim, D., Lee, C. R. & Leem, J. Y. Exciton–phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys. Rev. B 58, 16333–16339 (1998).

    Article  Google Scholar 

  10. ReshchikovM. A. & KorotkovR. Y. Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Phys. Rev. B 64, 115205 (2001).

    Article  Google Scholar 

  11. Hauswald, C. et al. Origin of the nonradiative decay of bound excitons in GaN nanowires. Phys. Rev. B 90, 1–9 (2014).

    Article  Google Scholar 

  12. Shan, W. et al. Binding energy for the intrinsic excitons in wurtzite GaN. Phys. Rev. B 54, 16369–16372 (1996).

    Article  Google Scholar 

  13. Chen, J. et al. Crystal structure and temperature-dependent luminescence characteristics of KMg4(PO4)3:Eu2+ phosphor for white light-emitting diodes. Sci. Rep. 5, 9673 (2015).

    Article  Google Scholar 

  14. Janulevicius, M. et al. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics. Sci. Rep. 6, 26098 (2016).

    Article  Google Scholar 

  15. George, N. C., Denault, K. A. & Seshadri, R. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013).

    Article  Google Scholar 

  16. Lee, J. et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15, 1–8 (2015).

    Google Scholar 

  17. Knupfer, M. Exciton binding energies in organic semiconductors. Appl. Phys. A 77, 623–626 (2003).

    Article  Google Scholar 

  18. Christensen, R. L., Drake, R. C. & Phillips, D. Time-resolved fluorescence anisotropy of perylene. J. Phys. Chem. 90, 5960–5967 (1986).

    Article  Google Scholar 

  19. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–402 (2015).

    Article  Google Scholar 

  20. Sargent, E. H. et al. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. J. Mater. Chem. C. 3, 8839–8843 (2015).

    Article  Google Scholar 

  21. Maculan, G. et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781–3786 (2015).

    Article  Google Scholar 

  22. Li, J., Gan, L., Fang, Z., He, H. & Ye, Z. Bright tail states in blue-emitting ultrasmall perovskite quantum dots. J. Phys. Chem. Lett. 8, 6002–6008 (2017).

    Article  Google Scholar 

  23. Wang, S., Bi, C., Yuan, J., Zhang, L. & Tian, J. Original core–shell structure of cubic CsPbBr3@amorphous CsPbBr x perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 3, 245–251 (2018).

    Article  Google Scholar 

  24. Zhitomirsky, D., Voznyy, O., Hoogland, S. & Sargent, E. H. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano 7, 5282–5290 (2013).

    Article  Google Scholar 

  25. Kondo, T. et al. Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 105, 503–506 (1998).

    Article  Google Scholar 

  26. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article  Google Scholar 

  27. Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem. Sci. 8, 4497–4504 (2017).

    Article  Google Scholar 

  28. Solis-Ibarra, D., Smith, I. C. & Karunadasa, H. I. Post-synthetic halide conversion and selective halogen capture in hybrid perovskites. Chem. Sci. 6, 4054–4059 (2015).

    Article  Google Scholar 

  29. Zhou, C. et al. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Appl. Mater. Interfaces 9, 44579–44583 (2017).

    Article  Google Scholar 

  30. Zhou, C. et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Z. Chem. Sci. 9, 586–593 (2018).

    Article  Google Scholar 

  31. Liang, D. et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016).

    Article  Google Scholar 

  32. Kawano, N. et al. Effects of organic moieties on luminescence properties of organic−inorganic layered perovskite-type compounds. J. Phys. Chem. C 118, 9101–9106 (2014).

    Article  Google Scholar 

  33. Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  Google Scholar 

  34. Yuan, Z., Shu, Y., Tian, Y., Xin, Y. & Ma, B. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 51, 16385–16388 (2015).

    Article  Google Scholar 

  35. Saidaminov, M. I. et al. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015).

    Article  Google Scholar 

  36. Müller, P. Practical suggestions for better crystal structures. Crystallogr. Rev. 15, 57–83 (2009).

    Article  Google Scholar 

  37. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  Google Scholar 

  38. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  Google Scholar 

  39. Kitazawa, N. Excitons in two-dimensional layered perovskite compounds: (C6H5C2H4NH3)2Pb(Br,I)4 and (C6H5C2H4NH3)2Pb(Cl,Br)4. Mater. Sci. Eng. B 49, 233–238 (1997).

    Article  Google Scholar 

  40. Franceschetti, A., Wei, S.-H. & Zunger, A. Absolute deformation potentials of Al, Si, and NaCl. Phys. Rev. B 50, 17797–17801 (1994).

    Article  Google Scholar 

  41. Guo, Z., Wu, X., Zhu, T., Zhu, X. & Huang, L. Electron–phonon scattering in atomically thin 2D perovskites. ACS Nano 10, 9992–9998 (2016).

    Article  Google Scholar 

  42. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–7 (2000).

    Article  Google Scholar 

  43. de Mello, J. C., Wittmannn, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230 (1997).

    Article  Google Scholar 

  44. Spectral Database of Organic Compounds (SDBS). National Institute of Advanced Industrial Science and Technology. National Institute of Advanced Industrial Science and Technology http://www.aist.go.jp/aist_e/latest_research/2004/20041118/20041118.html (2004).

  45. Zheng, K. et al. High excitation intensity opens a new trapping channel in organic–inorganic hybrid perovskite nanoparticles. ACS Energy Lett. 1, 1154–1161 (2016).

    Article  Google Scholar 

  46. Kawano, N. et al. Effects of organic moieties on luminescence properties of organic–inorganic layered perovskite-type compounds. J. Phys. Chem. C 118, 9101–9106 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This publication is based in part on work supported by the Ontario Research Fund Research Excellence Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. The authors thank Dr J. Britten for SCXRD measurements, M. Crawford and L. Quan for discussions and E. Palmiano, R. Wolowiec and D. Kopilovic for their help during the course of this study.

Author information

Authors and Affiliations

Authors

Contributions

X.G. and E.H.S. designed and directed this study. X.G. led the experimental work. A.J. and O.V. contributed to DFT simulations. X.G. and W.L. carried out the PLQY measurements and analysis. Z.P., R.S. and D.M. carried out RR spectroscopy and analysis. R.S. carried out TA measurements. S.N. and O.B. carried out NMR measurement. G.W. carried out the neutron scattering experiments and analysis. M.Y. prepared perovskite precursors. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

13 Figures, 5 Tables, 3 references

CIF files

4 CIF files = 1. C4 cif room temperature, 2. C4 cif low temperature, 3. PhC2 room temperature, 4. PhC2 low temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Voznyy, O., Jain, A. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nature Mater 17, 550–556 (2018). https://doi.org/10.1038/s41563-018-0081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0081-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing