Magnonics concepts utilize spin-wave quanta (magnons) for information transmission, processing and storage. To convert information carried by magnons into an electric signal promises compatibility of magnonic devices with conventional electronic devices, that is, magnon spintronics1. Magnons in inorganic materials have been studied widely with respect to their generation2,3, transport4,5 and detection6. In contrast, resonant spin waves in the room-temperature organic-based ferrimagnet vanadium tetracyanoethylene (V(TCNE) x (x 2)), were detected only recently7. Herein we report room-temperature coherent magnon generation, transport and detection in films and devices based on V(TCNE) x using three different techniques, which include broadband ferromagnetic resonance (FMR), Brillouin light scattering (BLS) and spin pumping into a Pt adjacent layer. V(TCNE) x can be grown as neat films on a large variety of substrates, and it exhibits extremely low Gilbert damping comparable to that in yttrium iron garnet. Our studies establish an alternative use for organic-based magnets, which, because of their synthetic versatility, may substantially enrich the field of magnon spintronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

  2. 2.

    Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

  3. 3.

    Jungfleisch, M. B. et al. Large spin-wave bullet in a ferrimagnetic insulator driven by the spin Hall effect. Phys. Rev. Lett. 116, 057601 (2016).

  4. 4.

    Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

  5. 5.

    Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

  6. 6.

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

  7. 7.

    Zhu, N. et al. Low loss spin wave resonances in organic-based ferrimagnet vanadium tetracyanoethylene thin films. Appl. Phys. Lett. 109, 082402 (2016).

  8. 8.

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

  9. 9.

    Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

  10. 10.

    Bauer, H. G., Chauleau, J. Y., Woltersdorf, G. & Back, C. H. Coupling of spinwave modes in wire structures. Appl. Phys. Lett. 104, 102404 (2014).

  11. 11.

    An, T. et al. Unidirectional spin-wave heat conveyer. Nat. Mater. 12, 549–553 (2013).

  12. 12.

    Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

  13. 13.

    Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

  14. 14.

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

  15. 15.

    Ellsworth, D. et al. Photo-spin-voltaic effect. Nat. Phys. 12, 861–866 (2016).

  16. 16.

    Plachy, R. et al. Ferrimagnetic resonance in films of vanadium [tetracyanoethanide] x , grown by chemical vapor deposition. Phys. Rev. B 70, 064411 (2004).

  17. 17.

    Yu, H. et al. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition. Appl. Phys. Lett. 105, 012407 (2014).

  18. 18.

    Miller, J. S. Oliver Kahn Lecture: Composition and structure of the V[TCNE] x (TCNE = tetracyanoethylene) room-temperature, organic-based magnet—a personal perspective. Polyhedron 28, 1596–1605 (2009).

  19. 19.

    Pokhodnya, K. I., Epstein, A. J. & Miller, J. S. Thin-film V[TCNE] x magnets. Adv. Mater. 12, 410–413 (2000).

  20. 20.

    Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J. & Miller, J. S. A room-temperature molecular/organic-based magnet. Science 252, 1415–1417 (1991).

  21. 21.

    Yoo, J.-W. et al. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 9, 638–642 (2010).

  22. 22.

    Fang, L. et al. Electrical spin injection from an organic-based ferrimagnet in a hybrid organic–inorganic heterostructure. Phys. Rev. Lett. 106, 156602 (2011).

  23. 23.

    Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

  24. 24.

    Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 8, 707–716 (2009).

  25. 25.

    Ando, K. et al. Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater. 10, 655–659 (2011).

  26. 26.

    Ando, K., Watanabe, S., Mooser, S., Saitoh, E. & Sirringhaus, H. Solution-processed organic spin–charge converter. Nat. Mater. 12, 622–627 (2013).

  27. 27.

    Watanabe, S. et al. Polaron spin current transport in organic semiconductors. Nat. Phys. 10, 308–313 (2014).

  28. 28.

    Koopmans, B. Organic spintronics: pumping spins through polymers. Nat. Phys. 10, 249–250 (2014).

  29. 29.

    Sun, D. et al. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling. Nat. Mater. 15, 863–869 (2016).

  30. 30.

    Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

  31. 31.

    Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

  32. 32.

    Jungfleisch, M. B. et al. Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B 91, 134407 (2015).

  33. 33.

    Rojas-Sánchez, J. C. et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 112, 106602 (2014).

  34. 34.

    Froning, I. H. et al. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene. Appl. Phys. Lett. 106, 122403 (2015).

Download references


This work was supported by NSF grant no. DMR-1701427 (p-ISHE measurements), MURI-AFOSR grant FA9550-14-1-0037 (cw ISHE and FMR measurements) and NSF MRSEC grant no. DMR-1121252 (the V(TCNE) x synthesis and film growth). All the authors contributed to the preparation of the manuscript.

Author information

Author notes

  1. These authors contributed equally: Haoliang Liu, Chuang Zhang, Hans Malissa.


  1. Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, USA

    • Haoliang Liu
    • , Chuang Zhang
    • , Hans Malissa
    • , Matthew Groesbeck
    • , Marzieh Kavand
    • , Ryan McLaughlin
    • , Shirin Jamali
    • , Dali Sun
    • , Leonard Wojcik
    • , Christoph Boehme
    •  & Z. Valy Vardeny
  2. Department of Chemistry, University of Utah, Salt Lake City, UT, USA

    • Jingjun Hao
    • , Royce A. Davidson
    •  & Joel S. Miller


  1. Search for Haoliang Liu in:

  2. Search for Chuang Zhang in:

  3. Search for Hans Malissa in:

  4. Search for Matthew Groesbeck in:

  5. Search for Marzieh Kavand in:

  6. Search for Ryan McLaughlin in:

  7. Search for Shirin Jamali in:

  8. Search for Jingjun Hao in:

  9. Search for Dali Sun in:

  10. Search for Royce A. Davidson in:

  11. Search for Leonard Wojcik in:

  12. Search for Joel S. Miller in:

  13. Search for Christoph Boehme in:

  14. Search for Z. Valy Vardeny in:


Z.V.V., C.B. and J.S.M. were responsible for the project planning, group management and final writing of the manuscript. H.L., C.Z., R.A.D., R.M. and J.H. prepared the organic magnetic films. H.L., C.Z., S.J. and D.S. prepared the ISHE devices. R.A.D. measured the critical temperature using SQUID. H.L., M.G. and D.S. measured the Gilbert damping and inverse spin Hall response using cw MW excitation. H.L. and C.Z. measured the non-thermal magnons using BLS. H.M. and M.K. measured the inverse spin Hall response by pulse MW. All the authors contributed to the results, analysis, discussion and manuscript preparation.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Z. Valy Vardeny.

Supplementary information

  1. Supplementary Information

    Supplementary text, Figures S1–S9, 13 references

About this article

Publication history