Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes

Abstract

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the cohorts, analysis pipeline and genetic correlations among the sites.
Fig. 2: Manhattan and porcupine plots for the TUD-multi meta-analysis and ancestry-specific GWAS.
Fig. 3: Integration with functional genomic data implicated 461 unique TUD candidate risk genes.
Fig. 4: Sankey diagram showing drug-repurposing results from S-PrediXcan brain tissues.
Fig. 5: FDR-significant genetic correlations between TUD-EUR and 113 complex traits, including smoking and related phenotypes.
Fig. 6: Phenome-wide association studies of TUD PGS.

Similar content being viewed by others

Data availability

Summary statistics can be accessed at the PsycheMERGE website (https://psychemerge.com) or by emailing the corresponding author (sanchezroige@ucsd.edu). The following datasets were retrieved for secondary analyses: Ensembl build 85 (https://www.ebi.ac.uk/about/news/updates-from-data-resources/ensembl-version-85/), Msigdb v.7.0 (https://data.broadinstitute.org/gsea-msigdb/msigdb/release/7.0/), Genotype–Tissue Expression (GTEx) v.8 project database (https://www.gtexportal.org/), PredictDB Data Repository (http://predictdb.hakyimlab.org/), BrainQTL (http://predictdb.hakyimlab.org/), BrainXcan database (https://zenodo.org/record/4895174), LINCs L1000 database (https://commonfund.nih.gov/LINCS), Drug Gene Interaction Database (https://repo-hub.broadinstitute.org/repurposing#download-data), 1000 Genomes Project phase 3 (https://internationalgenome.org/data-portal/sample), BrainSpan (http://www.brainspan.org/), H-MAGMA four Hi-C datasets provided with the software (https://github.com/thewonlab/H-MAGMA/tree/master/Input_Files) and PredictDB Data Repository (http://predictdb.org/).

Code availability

All software used to generate results has been previously published and corresponding citations are provided in Methods; that is, SAIGE v.0.44.6.5, PLINK v.1.9/v.2.080, LDSC v.1.0.1, cov-LDSC (https://github.com/yang-luo-lab/cov-ldsc), METAL 2020-05-05 (https://github.com/statgen/METAL), FUMA v.1.3.6a (https://fuma.ctglab.nl/), COJO in GCTA v.1.94.1, FINEMAP v.1.4.2, PAINTOR v.3.1, MAGMA v.1.08, H-MAGMA v.1.08, S-MultiXcan v.0.7.0, S-PrediXcan v.0.6.2, BrainXcan (https://github.com/hakyimlab/brainxcan), metafor package (v.3.8-1), DRUGSETS (https://github.com/nybell/drugsets), POPCORN (https://github.com/brielin/Popcorn), mtCOJO in GCTA v.1.94.1, cluster package v.2.1.4, PheWAS package v.0.12, LDpred2 from the bigsnpr package v.1.10.4, PRS-CS/PRS-CSx v.1.0.0 (https://github.com/getian107) and MendelianRandomization package v.0.9.0.

References

  1. Health Effects of Cigarette Smoking (CDC, 2021); www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/effects_cig_smoking/index.htm

  2. Oliver, J. A. & Foulds, J. Association between cigarette smoking frequency and tobacco use disorder in U.S. adults. Am. J. Prev. Med. 60, 726–728 (2021).

    Article  PubMed  Google Scholar 

  3. The Top 10 Causes of Death (WHO, 2020); www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  4. Benowitz, N. L. & Liakoni, E. Tobacco use disorder and cardiovascular health. Addiction 117, 1128–1138 (2022).

    Article  PubMed  Google Scholar 

  5. Kalman, D., Morissette, S. B. & George, T. P. Co-morbidity of smoking in patients with psychiatric and substance use disorders. Am. J. Addict. 14, 106–123 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  6. McRobbie, H. & Kwan, B. Tobacco use disorder and the lungs. Addiction 116, 2559–2571 (2021).

  7. Ziedonis, D., Das, S. & Larkin, C. Tobacco use disorder and treatment: new challenges and opportunities. Dialogues Clin. Neurosci. 19, 271–280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kendler, K. S., Schmitt, E., Aggen, S. H. & Prescott, C. A. Genetic and environmental influences on alcohol, caffeine, cannabis and nicotine use from early adolescence to middle adulthood. Arch. Gen. Psychiatry 65, 674–682 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Do, E. K. et al. Genetic and environmental influences on smoking behavior across adolescence and young adulthood in the Virginia twin study of adolescent behavioral development and the transitions to substance abuse follow-up. Twin Res. Hum. Genet. 18, 43–51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Agrawal, A., Budney, A. J. & Lynskey, M. T. The co-occurring use and misuse of cannabis and tobacco: a review. Addiction 107, 1221–1233 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Agrawal, A. et al. The genetics of addiction—a translational perspective. Transl. Psychiatry 2, e140–e140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan, P. F. & Kendler, K. S. The genetic epidemiology of smoking. Nicotine Tob. Res. 1, S51–S57 (1999).

    Article  PubMed  Google Scholar 

  13. Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612, 720–724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larsson, S. C. & Burgess, S. Appraising the causal role of smoking in several diseases: a systematic review and meta-analysis of Mendelian randomization studies. eBioMedicine 82, 104154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, S., Michaëlsson, K., Wan, Z. & Larsson, S. C. Associations of smoking and alcohol and coffee intake with fracture and bone mineral density: a Mendelian randomization study. Calcif. Tissue Int. 105, 582–588 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Mahedy, L. et al. Testing the association between tobacco and cannabis use and cognitive functioning: findings from an observational and Mendelian randomization study. Drug Alcohol Depend. 221, 108591 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou, H. et al. Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry 77, 1072 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wootton, R. E. et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol. Med. 50, 2435–2443 (2020).

    Article  PubMed  Google Scholar 

  19. Harrison, R., Munafò, M. R., Davey Smith, G. & Wootton, R. E. Examining the effect of smoking on suicidal ideation and attempts: triangulation of epidemiological approaches. Br. J. Psychiatry 217, 701–707 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu, K. et al. Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat. Commun. 11, 5302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanchez-Roige, S. et al. Genome-wide association study of alcohol use disorder identification test (AUDIT) scores in 20 328 research participants of European ancestry: GWAS of AUDIT. Addict. Biol. 24, 121–131 (2019).

    Article  PubMed  Google Scholar 

  22. Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 10, 1499 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mallard, T. T. & Sanchez-Roige, S. Dimensional phenotypes in psychiatric genetics: lessons from genome-wide association studies of alcohol use phenotypes. Complex Psychiatry 7, 45–48 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mallard, T. T. et al. Item-level genome-wide association study of the alcohol use disorders identification test in three population-based cohorts. Am. J. Psychiatry https://doi.org/10.1176/appi.ajp.2020.20091390 (2021).

  25. Sanchez-Roige, S. & Palmer, A. A. Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat. Neurosci. 23, 475–480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Quach, B. C. et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun. 11, 5562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hancock, D. B., Markunas, C. A., Bierut, L. J. & Johnson, E. O. Human genetics of addiction: new insights and future directions. Curr. Psychiatry Rep. 20, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sanchez-Roige, S., Cox, N. J., Johnson, E. O., Hancock, D. B. & Davis, L. K. Alcohol and cigarette smoking consumption as genetic proxies for alcohol misuse and nicotine dependence. Drug Alcohol Depend. 221, 108612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeBoever, C. et al. Assessing digital phenotyping to enhance genetic studies of human diseases. Am. J. Hum. Genet. 106, 611–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanchez-Roige, S. & Palmer, A. A. Electronic health records are the next frontier for the genetics of substance use disorders. Trends Genet. 35, 317–318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheutlin, A. B. et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. Am. J. Psychiatry 176, 846–855 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verma, A. et al. The Penn medicine bioBank: towards a genomics-enabled learning healthcare system to accelerate precision medicine in a diverse population. J. Pers. Med. 12, 1974 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roughley, S., Marcus, A. & Killcross, S. Dopamine D1 and D2 receptors are important for learning about neutral-valence relationships in sensory preconditioning. Front. Behav. Neurosci. 15, 740992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gelernter, J. et al. Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum. Mol. Genet. 15, 3498–3507 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hatoum, A. S. et al. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nat. Mental Health. 1, 210–223 (2023).

    Article  Google Scholar 

  37. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanchez-Roige, S. et al. Genome-wide association study of problematic opioid prescription use in 132,113 23andMe research participants of European ancestry. Mol. Psychiatry 26, 6209–6217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karlsson Linnér, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).

    Article  PubMed  Google Scholar 

  40. Xiao, M.-F. et al. Neural cell adhesion molecule modulates dopaminergic signaling and behavior by regulating dopamine D2 receptor internalization. J. Neurosci. 29, 14752–14763 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watanabe, K., Umićević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leeuw, C. A., de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kember, R. L. et al. Phenome-wide association analysis of substance use disorders in a deeply phenotyped sample. Biol. Psychiatry 93, 536–545 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Sanchez-Roige, S., Palmer, A. A. & Clarke, T.-K. Recent efforts to dissect the genetic basis of alcohol use and abuse. Biol. Psychiatry 87, 609–618 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. McLellan, A. T., Koob, G. F. & Volkow, N. D. Preaddiction—a missing concept for treating substance use disorders. JAMA Psychiatry 79, 749–751 (2022).

    Article  PubMed  Google Scholar 

  50. Miranda, M., Morici, J. F., Zanoni, M. B. & Bekinschtein, P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13, 363 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barker, J. M., Taylor, J. R., De Vries, T. J. & Peters, J. Brain-derived neurotrophic factor and addiction: pathological versus therapeutic effects on drug seeking. Brain Res. 1628, 68–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Duong, C. et al. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L425–L433 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Scieszka, D. et al. Subchronic electronic cigarette exposures have overlapping protein biomarkers with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 67, 503–506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aberg, K. A. et al. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 70, 573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Erzurumluoglu, A. M. et al. Meta-analysis of up to 622,409 individuals identifies 40 new smoking behaviour associated genetic loci. Mol. Psychiatry 25, 2392–2409 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Toikumo, S., Xu, H., Gelernter, J., Kember, R. L. & Kranzler, H. R. Integrating human brain proteomic data with genome-wide association study findings identifies new brain proteins in substance use traits. Neuropsychopharmacology 47, 2292–2299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kember, R. L. et al. Cross-ancestry meta-analysis of opioid use disorder uncovers new loci with predominant effects in brain regions associated with addiction. Nat. Neurosci. 25, 1279–1287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. King, D. P. et al. Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37, 641–650 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. King, A. C. et al. Effects of naltrexone on smoking cessation outcomes and weight gain in nicotine-dependent men and women. J. Clin. Psychopharmacol. 32, 630–636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carpenter, M. J. et al. Clinical strategies to enhance the efficacy of nicotine replacement therapy for smoking cessation: a review of the literature. Drugs 73, 407–426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. So, H.-C. et al. Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry. Nat. Neurosci. 20, 1342–1349 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Sey, N. Y. A. et al. Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits. Mol. Psychiatry 27, 3085–3094 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen, F. et al. Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing. Nat. Genet. 55, 291–300 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jamali, Q. Galantamine as a treatment option for nicotine addiction. J. Smok. Cessat. 2021, 9975811 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. McGinnis, K. A. et al. Using the biomarker cotinine and survey self-report to validate smoking data from United States Veterans Health Administration electronic health records. JAMIA Open 5, ooac040 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brazel, D. M. et al. Exome ChIP meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use. Biol. Psychiatry 85, 946–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Jang, S.-K. et al. Rare genetic variants explain missing heritability in smoking. Nat. Hum. Behav. 6, 1577–1586 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hiscock, R., Bauld, L., Amos, A., Fidler, J. A. & Munafò, M. Socioeconomic status and smoking: a review. Ann. NY Acad. Sci. 1248, 107–123 (2012).

    Article  PubMed  Google Scholar 

  72. Pasman, J. A. et al. Genetic risk for smoking: disentangling interplay between genes and socioeconomic status. Behav. Genet. 52, 92–107 (2022).

    Article  PubMed  Google Scholar 

  73. Treur, J. L. et al. Testing familial transmission of smoking with two different research designs. Nicotine Tob. Res. 20, 836–842 (2018).

    Article  PubMed  Google Scholar 

  74. Meyers, J. L. et al. Interaction between polygenic risk for cigarette use and environmental exposures in the Detroit Neighborhood Health Study. Transl. Psychiatry 3, e290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasman, J. A., Verweij, K. J. H. & Vink, J. M. Systematic review of polygenic gene-environment interaction in tobacco, alcohol and cannabis use. Behav. Genet. 49, 349–365 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sanchez-Roige, S., Kember, R. L. & Agrawal, A. Substance use and common contributors to morbidity: a genetics perspective. EBioMedicine 83, 104212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dennis, J. K. et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med. 13, 6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. The 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  80. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Altshuler, D. M., Gibbs, R. A., Peltonen, L., Dermitzakis, E. T. & Schaffner, S. F. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beach, T. G. et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 35, 354–389 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wingo, T. S. et al. Brain proteome-wide association study implicates new proteins in depression pathogenesis. Nat. Neurosci. 24, 810–817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bennett, D. A. et al. Religious orders study and rush memory and aging project. J. Alzheimers Dis. 64, S161–S189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

  96. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liang, Y. et al. BrainXcan identifies brain features associated with behavioral and psychiatric traits using large scale genetic and imaging data. Preprint at medRxiv https://doi.org/10.1101/2021.06.01.21258159 (2022).

  104. Bell, N., Uffelmann, E., van Walree, E., de Leeuw, C. & Posthuma, D. Using genome-wide association results to identify drug repurposing candidates. Preprint at medRxiv https://doi.org/10.1101/2022.09.06.22279660 (2022).

  105. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extentions. R package version 2.1.4 (2013).

  107. Bielinski, S. J. et al. Mayo Genome Consortia: a genotype–phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels. Mayo Clin. Proc. 86, 606–614 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).

    Article  PubMed Central  Google Scholar 

  109. Gelernter, J. et al. Genome-wide association study of alcohol dependence: significant findings in African- and European-Americans including new risk loci. Mol. Psychiatry 19, 41–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Pierucci-Lagha, A. et al. Diagnostic reliability of the Semi-structured Assessment for Drug Dependence and Alcoholism (SSADDA). Drug Alcohol Depend. 80, 303–312 (2005).

    Article  PubMed  Google Scholar 

  111. Pierucci-Lagha, A. et al. Reliability of DSM-IV diagnostic criteria using the semi-structured assessment for drug dependence and alcoholism (SSADDA). Drug Alcohol Depend. 91, 85–90 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) (American Psychiatric Association, 1994).

  113. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 2013).

  114. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Denny, J. C., Bastarache, L. & Roden, D. M. Phenome-wide association studies as a tool to advance precision medicine. Annu. Rev. Genomics Hum. Genet. 17, 353–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lam, M. et al. RICOPILI: Rapid imputation for COnsortias PIpeLIne. Bioinformatics 36, 930–933 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

  118. Rescorla, L. et al. Behavioral/emotional problems of preschoolers caregiver/teacher reports from 15 societies. J. Emot. Behav. Disord. 20, 68–81 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Akshoomoff, N. et al. NIH Toolbox Cognitive Function Battery (CFB): composite scores of crystallized, fluid and overall cognition. Monogr. Soc. Res. Child Dev. 78, 119–132 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    Article  PubMed  Google Scholar 

  122. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with several genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.V.J., S.B.B., S.R.P. and S.S.-R. were supported by funds from the California Tobacco-Related Disease Research Program (grant nos T29KT0526 and T32IR5226). S.B.B. was also supported by P50DA037844. B.K.P., J.J.M. and S.S.-R. were supported by NIH/NIDA DP1DA054394. A.S.H. was supported by NIAAA AA030083. T.T.M. was supported by NHGRI T32HG010464. E.C.J. was supported by K01DA051759. J.G. was supported by VA Merit Award CX001849-01 and 5R01DA054869. D.B.H. was supported by R01 DA042090 and R01 DA051913. L.K.D. was supported by R01 MH113362. H.R.K. was supported by the Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center. R.L.K. was supported by NIAAA K01 AA028292. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. CTSA (SD, Vanderbilt Resources): The project described was supported by the National Center for Research Resources, grant UL1RR024975-01 and is now at the National Center for Advancing Translational Sciences, grant 2 UL1TR000445-06. BioVU: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center’s BioVU which is supported by numerous sources: institutional funding, private agencies and federal grants. These include the NIH funded Shared Instrumentation grant S10RR025141; and CTSA grants UL1TR002243, UL1TR000445 and UL1RR024975. Genomic data are also supported by investigator-led projects that include U01HG004798, R01NS032830, RC2GM092618, P50GM115305, U01HG006378, U19HL065962 amd R01HD074711; and additional funding sources listed at https://victr.vumc.org/biovu-funding/. This research is based on data from the Million Veteran Program, Office of Research and Development, Veterans Health Administration and was supported by funding from the Department of Veterans Affairs Office of Research and Development, Million Veteran Program grant no. I01 BX004820. This publication does not represent the views of the Department of Veterans Affairs or the United States Government. We acknowledge the Penn Medicine BioBank and the Mayo Clinic Biobank for providing data and thank the patient-participants of Penn Medicine and Mayo Clinic who consented to participate in this research programme. We also thank the Penn Medicine BioBank team and Regeneron Genetics Center for providing genetic variant data for analysis. The PMBB is approved under IRB protocol no. 813913 and supported by Perelman School of Medicine at University of Pennsylvania, a gift from the Smilow family and the National Center for Advancing Translational Sciences of the NIH under CTSA award no. UL1TR001878. Data used in the preparation of this article were obtained from the ABCD study (https://abcdstudy.org), held in the NIMH Data Archive. This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9–10 years and follow them over 10 years into early adulthood. The ABCD study is supported by the NIH and additional federal partners under award nos. U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, U24DA041147, U01DA041093 and U01DA041025. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/Consortium_Members. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. We also thank the Externalizing Consortium for sharing the GWAS summary statistics of externalizing. The Externalizing Consortium comprises: principal investigators D. M. Dick, P. Koellinger, K. P. Harden, A A.P.; lead analysts R. K. Linnér, T.T.M., P. B. Barr and S.S.-R; contributor I. D. Waldman. The Externalizing Consortium has been supported by the National Institute on Alcohol Abuse and Alcoholism (R01AA015416—administrative supplement) and the National Institute on Drug Abuse (R01DA050721). Additional funding for investigator effort has been provided by K02AA018755, U10AA008401 and P50AA022537, as well as a European Research Council Consolidator grant (647648 EdGe to P. Koellinger). The content is solely the responsibility of the authors and does not necessarily represent the official views of the above funding bodies. The Externalizing Consortium would like to thank the following groups for making the research possible: 23andMe, Add Health, Vanderbilt University Medical Center’s BioVU, Collaborative Study on the Genetics of Alcoholism (COGA), the Psychiatric Genomics Consortium’s SUDs working group, UK10K Consortium, UK Biobank and Philadelphia Neurodevelopmental Cohort. We thank B. Quach and J. Marks for their help in supplying portions of the data needed to create Supplementary Fig. 1.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.S.-R. conceived the idea for the paper and wrote and edited the paper. S.T., M.V.J., B.K.P., H.L., T.T.M., S.B.B., L.V.-R., H.X., A.S.H., J.J.M., V.K.P., B.J.C. and R.LK. provided analyses. E.C.J., G.D.J., A.B., R.P., J.M.B., J.W.S., L.K.D., A.C.J. and R.L.K. contributed data. All contributing authors wrote and edited the paper.

Corresponding author

Correspondence to Sandra Sanchez-Roige.

Ethics declarations

Competing interests

J.W.S. is a member of the Scientific Advisory Board of Sensorium Therapeutics (with equity) and has received grant support from Biogen. He is Principal Investigator of a collaborative study of the genetics of depression and bipolar disorder sponsored by 23andMe for which 23andMe provides analysis time as in-kind support but no payments. H.R.K. is a member of advisory boards for Clearmind Medicine, Dicerna Pharmaceuticals, Sophrosyne Pharmaceuticals and Enthion Pharmaceuticals; a consultant to Sobrera Pharmaceuticals; the recipient of research funding and medication supplies for an investigator-initiated study from Alkermes; a member of the American Society of Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative, which was supported in the last 3 years by Alkermes, Dicerna, Ethypharm, Lundbeck, Mitsubishi, Otsuka and Pear Therapeutics; and, with J.G., is a holder of US patent 10,900,082 titled: ‘Genotype-guided dosing of opioid agonists’ issued 26 January 2021. The other authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Robbee Wedow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional authors and contributions, Supplementary Methods and Figs. 1–9.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–39.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toikumo, S., Jennings, M.V., Pham, B.K. et al. Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01851-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing