Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anthropogenic impacts on mud and organic carbon cycling

Abstract

Fine-grained muds produced largely from rock weathering at the Earth’s surface have great influence on global carbon cycling. Mud binds and protects organic carbon (OC) from remineralization, and its organic loading controls the amounts, timescales and pathways of OC sequestration in sediments and soils. Human activities have resulted in marked changes (both increases and decreases) in mud accumulation and associated OC (mud–OC) loadings in different environments via altering organic matter inputs and reactivity. Such impacts on mud and mud–OC can be directly caused by activities such as damming and levee building, or indirectly result from human-induced climate change. Here we present a synthesis of impacts of human activities on the production, transfer and storage of mud–OC. In general, we find that anthropogenic climate warming has increased net fluxes of mud–OC in most of the systems discussed here (for example, mountain glaciers, land erosion, dam burial, river export, permafrost thaw, ice-sheet erosion and burial in margins), with uncertainties for tidal flats and floodplains, and probably net losses for coastal wetlands. Whether the anthropogenic mobilization of mud–OC results in more or less sequestration of OC is not known with the current data, as it is dependent on timescales that involve complex transient effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major pathways of mud movement, POC fluxes and human-induced changes.
Fig. 2: Examples of major perturbations of mud–OC pathways.
Fig. 3: Gradients of mud–OC reactivity.

Similar content being viewed by others

References

  1. Deevey, E. S. In defense of mud. Bull. Ecol. Soc. Am. 51, 5–8 (1970).

    Article  Google Scholar 

  2. Malakoff, D. Mud. Science 369, 894–895 (2020).

    Article  CAS  Google Scholar 

  3. Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4, 401–423 (2012).

    Article  Google Scholar 

  4. Eglinton, T. I. et al. Climate control on terrestrial biospheric carbon turnover. Proc. Natl Acad. Sci. USA 118, e2011585118 (2021).

    Article  CAS  Google Scholar 

  5. Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 603, 401–410 (2022).

    Article  CAS  Google Scholar 

  6. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  Google Scholar 

  7. Blatt, H. Sedimentary Petrology (1982).

  8. Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).

    Article  CAS  Google Scholar 

  9. Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    Article  Google Scholar 

  10. Rosentreter, J. A. et al. Coastal vegetation and estuaries are collectively a greenhouse gas sink. Nat. Clim. Change 13, 579–587 (2023).

    Article  Google Scholar 

  11. Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).

    Article  Google Scholar 

  12. Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).

    Article  Google Scholar 

  13. Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).

    Article  CAS  Google Scholar 

  14. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article  Google Scholar 

  15. Kemp, D. B., Sadler, P. M. & Vanacker, V. The human impact on North American erosion, sediment transfer, and storage in a geologic context. Nat. Commun. 11, 6012 (2020).

    Article  CAS  Google Scholar 

  16. Zhang, F. et al. Human impacts overwhelmed hydroclimate control of soil erosion in china 5,000 years ago. Geophys. Res. Lett. 49, e2021GL096983 (2022).

    Article  Google Scholar 

  17. Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article  CAS  Google Scholar 

  18. Panagos, P. et al. Projections of soil loss by water erosion in Europe by 2050. Environ. Sci. Policy 124, 380–392 (2021).

    Article  Google Scholar 

  19. Li, G. et al. Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) River basin (China) a significant carbon sink. J. Geophys. Res. Biogeosci. 120, 39–53 (2015).

    Article  CAS  Google Scholar 

  20. Zhang, H. et al. Global changes alter the amount and composition of land carbon deliveries to European rivers and seas. Commun. Earth Environ. 3, 245 (2022).

    Article  Google Scholar 

  21. IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  22. Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land–ocean interface. Org. Geochem. 115, 138–155 (2018).

    Article  CAS  Google Scholar 

  23. Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  CAS  Google Scholar 

  24. Kuehl, S. A. et al. Asia’s mega rivers: common source, diverse fates. Eos 10.1029/2020EO143936 (2020).

  25. Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).

    Article  CAS  Google Scholar 

  26. Mendonca, R. et al. Hydroelectric carbon sequestration. Nat. Geosci. 5, 838–840 (2012).

    Article  CAS  Google Scholar 

  27. Maavara, T., Lauerwald, R., Regnier, P. & Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 8, 15347 (2017).

    Article  CAS  Google Scholar 

  28. Charoenlerkthawin, W. et al. Effects of dam construction in the Wang River on sediment regimes in the Chao Phraya River basin. Water 13, 2146 (2021).

    Article  Google Scholar 

  29. Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & Del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).

    Article  CAS  Google Scholar 

  30. Kastowski, M., Hinderer, M. & Vecsei, A. Long‐term carbon burial in European lakes: analysis and estimate. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003874 (2011).

  31. Hoffmann, T. O. in Treatise on Geomorphology 2nd edn (ed. Shroder, J. F.) 458–477 (Academic Press, 2022).

  32. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article  CAS  Google Scholar 

  33. Lewin, J. & Ashworth, P. J. The negative relief of large river floodplains. Earth-Sci. Rev. 129, 1–23 (2014).

    Article  Google Scholar 

  34. Blattmann, T. M. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science 366, 742–745 (2019).

    Article  CAS  Google Scholar 

  35. Repasch, M. et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection. Nat. Geosci. 14, 842–848 (2021).

    Article  CAS  Google Scholar 

  36. Repasch, M. et al. River organic carbon fluxes modulated by hydrodynamic sorting of particulate organic matter. Geophys. Res. Lett. 49, e2021GL096343 (2022).

    Article  CAS  Google Scholar 

  37. Scheingross, J. S. et al. The fate of fluvially-deposited organic carbon during transient floodplain storage. Earth Planet. Sci. Lett. 561, 116822 (2021).

    Article  CAS  Google Scholar 

  38. Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).

    Article  CAS  Google Scholar 

  39. Grant, K. E., Galy, V. V., Haghipour, N., Eglinton, T. I. & Derry, L. A. Persistence of old soil carbon under changing climate: the role of mineral–organic matter interactions. Chem. Geol. 587, 120629 (2022).

    Article  CAS  Google Scholar 

  40. Wu, L. et al. Impacts of land use change on river systems for a river network plain. Water 10, 609 (2018).

    Article  Google Scholar 

  41. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  42. Wissing, L. et al. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 228, 90–103 (2014).

    Article  Google Scholar 

  43. Julian, J. P., Wilgruber, N. A., de Beurs, K. M., Mayer, P. M. & Jawarneh, R. N. Long-term impacts of land cover changes on stream channel loss. Sci. Total Environ. 537, 399–410 (2015).

    Article  CAS  Google Scholar 

  44. Golombek, N. Y. et al. Fluvial organic carbon composition regulated by seasonal variability in lowland river migration and water discharge. Geophys. Res. Lett. 48, e2021GL093416 (2021).

    Article  CAS  Google Scholar 

  45. Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I. & Aizenman, H. A global empirical typology of anthropogenic drivers of environmental change in deltas. Sustain. Sci. 11, 525–537 (2016).

    Article  Google Scholar 

  46. Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).

    Article  CAS  Google Scholar 

  47. Rodriguez, A., McKee, B., Miller, C., Bost, M. & Atencio, A. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).

    Article  CAS  Google Scholar 

  48. van de Lageweg, W. I., Braat, L., Parsons, D. R. & Kleinhans, M. G. Controls on mud distribution and architecture along the fluvial-to-marine transition. Geology 46, 971–974 (2018).

    Article  Google Scholar 

  49. Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    Article  CAS  Google Scholar 

  50. Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749 (2022).

    Article  CAS  Google Scholar 

  51. Pinsonneault, A. J. et al. Dissolved organic carbon sorption dynamics in tidal marsh soils. Limnol. Oceanogr. 66, 214–225 (2021).

    Article  CAS  Google Scholar 

  52. Ilgen, A. G. et al. Shales at all scales: exploring coupled processes in mudrocks. Earth-Sci. Rev. 166, 132–152 (2017).

    Article  CAS  Google Scholar 

  53. Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    Article  Google Scholar 

  54. Tanski, G. et al. Permafrost carbon and CO2 pathways differ at contrasting coastal erosion sites in the Canadian Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2021.630493 (2021).

  55. Zhang, X. et al. Recent warming fuels increased organic carbon export from Arctic permafrost. AGU Adv. 2, e2021AV000396 (2021).

    Article  Google Scholar 

  56. Schirrmeister, L. The genesis of Yedoma Ice Complex permafrost – grain-size endmember modeling analysis from Siberia and Alaska. EG Quat. Sci. J. 69, 33–53 (2020).

    Google Scholar 

  57. Palmtag, J. & Kuhry, P. Grain size controls on cryoturbation and soil organic carbon density in permafrost‐affected soils. Permafr. Periglac. Process. 29, 112–120 (2018).

    Article  Google Scholar 

  58. Vonk, J. E. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489, 137–140 (2012).

    Article  CAS  Google Scholar 

  59. Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).

    Article  CAS  Google Scholar 

  60. Cunliffe, A. M. Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. Cryosphere 13, 1513–1528 (2019).

    Article  Google Scholar 

  61. Cui, X., Bianchi, T. S., Jaeger, J. M. & Smith, R. W. Biospheric and petrogenic organic carbon flux along southeast Alaska. Earth Planet. Sci. Lett. 452, 238–246 (2016).

    Article  CAS  Google Scholar 

  62. Jervey, M. T. in Sea-Level Changes: An Integrated Approach (eds Wilgus, C. K. et al.) (SEPM Society for Sedimentary Geology, 1988).

  63. Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea‐level rise. Front. Ecol. Environ. 14, 307–316 (2016).

    Article  Google Scholar 

  64. Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    Article  CAS  Google Scholar 

  65. Ouyang, X. & Lee, S. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11, 5057–5071 (2014).

    Article  Google Scholar 

  66. Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    Article  CAS  Google Scholar 

  67. Brown, S. & Nicholls, R. J. Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci. Total Environ. 527, 362–374 (2015).

    Article  Google Scholar 

  68. Meselhe, E., White, E., Wang, Y. & Reed, D. Uncertainty analysis for landscape models used for coastal planning. Estuar. Coast. Shelf Sci. 256, 107371 (2021).

    Article  CAS  Google Scholar 

  69. Roe, G. H., Baker, M. B. & Herla, F. Centennial glacier retreat as categorical evidence of regional climate change. Nat. Geosci. 10, 95–99 (2017).

    Article  CAS  Google Scholar 

  70. Losapio, G. et al. The consequences of glacier retreat are uneven between plant species. Front. Ecol. Evol. 8, 616562 (2021).

    Article  Google Scholar 

  71. Strzelecki, M. C. et al. New fjords, new coasts, new landscapes: the geomorphology of paraglacial coasts formed after recent glacier retreat in Brepollen (Hornsund, southern Svalbard). Earth Surf. Process. Landf. 45, 1325–1334 (2020).

    Article  Google Scholar 

  72. Dümig, A., Häusler, W., Steffens, M. & Kögel-Knabner, I. Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo–mineral associations. Geochim. Cosmochim. Acta 85, 1–18 (2012).

    Article  Google Scholar 

  73. Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article  Google Scholar 

  74. Mayer, L. M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58, 1271–1284 (1994).

    Article  CAS  Google Scholar 

  75. Aller, R. C. & Blair, N. E. Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: a sedimentary incinerator. Cont. Shelf Res. 26, 2241–2259 (2006).

    Article  Google Scholar 

  76. Ai, L. et al. How did the climate and human activities modulate the sedimentary evolution of the Central Yellow Sea Mud, China. J. Asian Earth Sci. 235, 105299 (2022).

  77. Luo, X., Yang, S., Wang, R., Zhang, C. & Li, P. New evidence of Yangtze Delta recession after closing of the Three Gorges Dam. Sci. Rep. 7, 41735 (2017).

    Article  CAS  Google Scholar 

  78. Nittrouer, C. A. et al. Amazon sediment transport and accumulation along the continuum of mixed fluvial and marine processes. Annu. Rev. Mar. Sci. 13, 501–536 (2021).

    Article  Google Scholar 

  79. Mackenzie, F. T., Ver, L. M. & Lerman, A. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190, 13–32 (2002).

    Article  CAS  Google Scholar 

  80. Lacroix, F., Ilyina, T., Mathis, M., Laruelle, G. G. & Regnier, P. Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Glob. Change Biol. 27, 5491–5513 (2021).

    Article  CAS  Google Scholar 

  81. Fennel, K. & Testa, J. M. Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11, 105–130 (2019).

    Article  Google Scholar 

  82. Yao, P. et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation. Cont. Shelf Res. 91, 1–11 (2014).

    Article  Google Scholar 

  83. Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J. & Chen, H. Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism. Geology 39, 71–74 (2011).

    Article  CAS  Google Scholar 

  84. Bouchez, J. et al. Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles. Geochim. Cosmochim. Acta 133, 280–298 (2014).

    Article  CAS  Google Scholar 

  85. Keil, R. G. & Mayer, L. M. in Treatise on Geochemistry (eds Holland, H .D. and Turekian, K. K.) 337–359 (Elsevier, 2014).

  86. Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev. 123, 53–86 (2013).

    Article  CAS  Google Scholar 

  87. Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    Article  CAS  Google Scholar 

  88. Arnarson, T. S. & Keil, R. G. Changes in organic matter–mineral interactions for marine sediments with varying oxygen exposure times. Geochim. Cosmochim. Acta 71, 3545–3556 (2007).

    Article  CAS  Google Scholar 

  89. Bruni, E. T. et al. Sedimentary hydrodynamic processes under low-oxygen conditions: implications for past, present, and future oceans. Front. Earth Sci. 10, 886395 (2022).

    Article  Google Scholar 

  90. Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  CAS  Google Scholar 

  91. Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  CAS  Google Scholar 

  92. Hemingway, J. D. et al. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360, 209–212 (2018).

    Article  CAS  Google Scholar 

  93. Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

    Article  CAS  Google Scholar 

  94. Tian, H. et al. Increased terrestrial carbon export and CO2 evasion from global inland waters since the preindustrial era. Glob. Biogeochem. Cycles 37, e2023GB007776 (2023).

    Article  CAS  Google Scholar 

  95. Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017).

    Article  Google Scholar 

  96. Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    Article  CAS  Google Scholar 

  97. Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).

    Article  CAS  Google Scholar 

  98. Middelburg, J. J. Marine Carbon Biogeochemistry: A Primer for Earth System Scientists (Springer, 2019).

  99. Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    Article  CAS  Google Scholar 

  100. LaRowe, D. E. et al. Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. Geochim. Cosmochim. Acta 286, 227–247 (2020).

    Article  CAS  Google Scholar 

  101. Bradley, J. A., Hülse, D., LaRowe, D. E. & Arndt, S. Transfer efficiency of organic carbon in marine sediments. Nat. Commun. 13, 7297 (2022).

    Article  CAS  Google Scholar 

  102. Faust, J. C. et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat. Commun. 12, 275 (2021).

    Article  CAS  Google Scholar 

  103. Suello, R. H. et al. Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient. Biogeosciences 19, 1571–1585 (2022).

    Article  CAS  Google Scholar 

  104. Gu, X. & Brantley, S. L. How particle size influences oxidation of ancient organic matter during weathering of black shale. ACS Earth Space Chem. 6, 1443–1459 (2022).

    Article  CAS  Google Scholar 

  105. Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).

    Article  CAS  Google Scholar 

  106. Hage, S. et al. High rates of organic carbon burial in submarine deltas maintained on geological timescales. Nat. Geosci. 15, 919–924 (2022).

    Article  CAS  Google Scholar 

  107. Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).

    Article  Google Scholar 

  108. Keiluweit, M., Gee, K., Denney, A. & Fendorf, S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biol. Biochem. 118, 42–50 (2018).

    Article  CAS  Google Scholar 

  109. Curry, K. J. et al. Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochim. Cosmochim. Acta 71, 1709–1720 (2007).

    Article  CAS  Google Scholar 

  110. Silburn, B. et al. Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability. Biogeochemistry 135, 69–88 (2017).

    Article  CAS  Google Scholar 

  111. Georgiou, K. et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 13, 3797 (2022).

    Article  CAS  Google Scholar 

  112. Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 27, 319–361 (1997).

    Article  CAS  Google Scholar 

  113. Potter, P. E., Maynard, J. B. & Depetris, P. J. Mud and Mudstones: Introduction and Overview (Springer, 2005).

  114. Cai, C. et al. Occurrence of organic matter in argillaceous sediments and rocks and its geological significance: a review. Chem. Geol. 639, 121737 (2023).

    Article  CAS  Google Scholar 

  115. Bock, M. J. & Mayer, L. M. Mesodensity organo–clay associations in a near-shore sediment. Mar. Geol. 163, 65–75 (2000).

    Article  CAS  Google Scholar 

  116. Virto, I., Moni, C., Swanston, C. & Chenu, C. Turnover of intra-and extra-aggregate organic matter at the silt-size scale. Geoderma 156, 1–10 (2010).

    Article  CAS  Google Scholar 

  117. Blair, N. E., Leithold, E. L. & Aller, R. C. From bedrock to burial: the evolution of particulate organic carbon across coupled watershed–continental margin systems. Mar. Chem. 92, 141–156 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Jon and Beverly Thompson Chair in Geological Sciences at the University of Florida provided support for T.S.B. D.B.K. was supported by the National Key R&D Program of China (grant no. 2023YFF0804000). P.R. received financial support from the European Union’s Horizon 2020 research and innovation programme ESM2025 – Earth System Models for the Future project (grant no. 101003536) and the Belgian Science Policy Office (grant no. FED-tWIN2019prf-008). S.A. received funding from the Belgian Science Policy Office (grant no. FED-tWIN2019prf-008). V.G. received funds from NSF-OCE-1851309.

Author information

Authors and Affiliations

Authors

Contributions

T.S.B., L.M.M., J.H.F.A., S.A., V.G., D.B.K., S.A.K., N.J.M. and P.R. contributed to the conceptual development and writing of this paper. T.S.B., L.M.M and J.H.F.A. were key in leading the group through different stages of progress and revision. T.S.B., J.H.F.A, L.M.M., S.A., N.J.M. and P.R. contributed greatly to development and revisions of the table and figures.

Corresponding author

Correspondence to Thomas S. Bianchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Marisa Repasch, Joel Scheingross and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, T.S., Mayer, L.M., Amaral, J.H.F. et al. Anthropogenic impacts on mud and organic carbon cycling. Nat. Geosci. 17, 287–297 (2024). https://doi.org/10.1038/s41561-024-01405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01405-5

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology