Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oceanic crustal flow in Iceland observed using seismic anisotropy

Abstract

Understanding accretion and deformation processes at mid-ocean ridges is crucial as they control the resulting oceanic crustal structure, which covers two-thirds of Earth’s surface. The most common tool for observing such dynamic processes within the Earth is seismic anisotropy. Iceland, which is uplifted by a convective mantle plume and has an active spreading ridge system exposed above sea level, offers a unique opportunity for studying this phenomenon. Here we use a high-resolution dataset of Love and Rayleigh wave speeds to constrain the seismic anisotropy in the Icelandic crust. We show that seismic anisotropy in the lower crust is controlled by crystal preferred orientation, providing a direct observation of lower crustal flow. Furthermore, since shear is needed to align the crystals, our results reveal that crustal flow cannot be a simple translation of mass and requires internal deformation. This finding suggests that crustal flow plays an important role in oceanic crustal accretion and deformation where thick, hot oceanic crust is formed, such as at volcanic rifted margins and where there are mantle plume–ridge interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crustal thickness in Iceland and ray path coverage.
Fig. 2: Path average ξ from phase velocity dispersion curves.
Fig. 3: Radial anisotropy models for TPL and olivine LPO.
Fig. 4: ξ versus azimuth at different depths.

Similar content being viewed by others

Data availability

Seismic data from the HOTSPOT (https://doi.org/10.7914/SN/XD_1996) network, the Cambridge University network in Iceland (https://doi.org/10.7914/SN/Z7_2010) and the station BORG from the GSN network (https://doi.org/10.7914/SN/II) can be freely accessed on the Incorporated Research Institutions for Seismology website (http://service.iris.edu/fdsnws/dataselect/1/). Data from the IMAGE project by GFZ (stations KEF, SUH, HOV) and from BGS (stations FAL1, FAL 3) are available from those institutions and were used under license for the current study: for data requests from GFZ or BGS, please contact those organizations directly. All seismic noise cross correlations used in this work are freely available at https://doi.org/10.6084/m9.figshare.13228211.

Code availability

All software used in this work is freely available online. MSNoise, a Python package for computing cross correlations, is available at http://www.msnoise.org/. ts-PWS, a software package for computing the time-scale phase-weighted stack, is available at https://github.com/sergiventosa/ts-PWS. SURF96, software for surface wave analysis, is available at http://www.eas.slu.edu/eqc/eqc_cps/.

References

  1. Duennebier, F. K. & Sutton, G. H. Fidelity of ocean bottom seismic observations. Mar. Geophys. Res. 17, 535–555 (1995).

    Article  Google Scholar 

  2. Mangano, G., D’Alessandro, A. & D’Anna, G. Long term underwater monitoring of seismic areas: design of an ocean bottom seismometer with hydrophone and its performance evaluation. In Proc. Oceans 2011 IEEE (Santander, 2011); https://doi.org/10.1109/Oceans-Spain.2011.6003609

  3. White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. https://doi.org/10.1029/JB094iB06p07685 (1989).

  4. Darbyshire, F. A., Bjarnason, I. T., White, R. S. & Flóvenz, Ó. G. Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile. Geophys. J. Int. https://doi.org/10.1046/j.1365-246X.1998.00701.x (1998).

  5. White, R. S., McKenzie, D. & O’Nions, R. K. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. 97, 19683–19715 (1992).

    Article  Google Scholar 

  6. Christeson, G. L., Goff, J. A. & Reece, R. S. Synthesis of oceanic crustal structure from two-dimensional seismic profiles. Rev. Geophys. https://doi.org/10.1029/2019RG000641 (2019).

  7. Staples, R. K. et al. Färoe-Iceland Ridge Experiment 1. Crustal structure of northeastern Iceland. J. Geophys. Res. Solid Earth 102, 7849–7866 (1997).

    Article  Google Scholar 

  8. Jenkins, J. et al. Crustal formation on a spreading ridge above a mantle plume: receiver function imaging of the Icelandic crust. J. Geophys. Res. Solid Earth 123, 5190–5208 (2018).

    Article  Google Scholar 

  9. Allen, R. M. et al. Plume-driven plumbing and crustal formation in Iceland. J. Geophys. Res. 107, 2163 (2002).

    Article  Google Scholar 

  10. Brandsdóttir, B., Menke, W., Einarsson, P., White, R. S. & Staples, R. K. Färoe-Iceland Ridge Experiment 2. Crustal structure of the Krafla central volcano. J. Geophys. Res. Solid Earth 102, 7867–7886 (1997).

    Article  Google Scholar 

  11. Hardarson, B. S., Fitton, J. G., Ellam, R. M. & Pringle, M. S. Rift relocation—a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. Earth Planet. Sci. Lett. https://doi.org/10.1016/s0012-821x(97)00145-3 (1997).

  12. Pálmason, G. Crustal Structure of Iceland from Explosion Seismology Publ. 40 (Soc. Sci. Islandica, 1971).

  13. Gudmundsson, Ó. The dense root of the Iceland crust. Earth Planet. Sci. Lett. 206, 427–440 (2003).

    Article  Google Scholar 

  14. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  15. Flóvenz, Ó. G. & Saemundsson, K. Heat flow and geothermal processes in Iceland. Tectonophysics 225, 123–138 (1993).

    Article  Google Scholar 

  16. Hjartardóttir, Á. R., Einarsson, P. & Björgvinsdóttir, S. G. Fissure swarms and fracture systems within the Western Volcanic Zone, Iceland—effects of spreading rates. J. Struct. Geol. 91, 39–53 (2016).

    Article  Google Scholar 

  17. Shapiro, N. M., Ritzwoller, M. H., Molnar, P. & Levin, V. Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science 305, 233–236 (2004).

    Article  Google Scholar 

  18. Duret, F. et al. Surface wave dispersion across Tibet: direct evidence for radial anisotropy in the crust. Geophys. Res. Lett. 37, L16306 (2010).

    Article  Google Scholar 

  19. Li, A. & Detrick, R. S. Azimuthal anisotropy and phase velocity beneath Iceland: implication for plume–ridge interaction. Earth Planet. Sci. Lett. 214, 153–165 (2003).

    Article  Google Scholar 

  20. Bjarnason, I. T., Silver, P. G., Rümpker, G. & Solomon, S. C. Shear wave splitting across the Iceland hot spot: results from the ICEMELT experiment. J. Geophys. Res. 107, 2382 (2002).

    Google Scholar 

  21. Bjarnason, I. T. & Schmeling, H. The lithosphere and asthenosphere of the Iceland hotspot from surface waves. Geophys. J. Int. 178, 394–418 (2009).

    Article  Google Scholar 

  22. Bensen, G. D. et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 169, 1239–1260 (2007).

    Article  Google Scholar 

  23. Yao, H., van der Hilst, R. D. & de Hoop, M. V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int. 166, 732–744 (2006).

    Article  Google Scholar 

  24. Herrmann, R. B. Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013).

    Article  Google Scholar 

  25. Anderson, D. L. Recent evidence concerning the structure and composition of the Earth’s mantle. Phys. Chem. Earth https://doi.org/10.1016/0079-1946(65)90013-3 (1965).

  26. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  27. Barclay, A. H. Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35° N. J. Geophys. Res. 108, 2378 (2003).

    Article  Google Scholar 

  28. Dunn, R. A. & Toomey, D. R. Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9° 30’ N). Earth Planet. Sci. Lett. 189, 9–17 (2001).

    Article  Google Scholar 

  29. White, R. S. et al. Dynamics of dyke intrusion in the mid-crust of Iceland. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2011.02.038 (2011).

  30. Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature https://doi.org/10.1038/nature14111 (2014).

  31. Backus, G. E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962).

    Article  Google Scholar 

  32. Jousselin, D., Morales, L. F. G., Nicolle, M. & Stephant, A. Gabbro layering induced by simple shear in the Oman ophiolite Moho transition zone. Earth Planet. Sci. Lett. 331–332, 55–66 (2012).

    Article  Google Scholar 

  33. Russell, J. B. et al. High-resolution constraints on Pacific upper mantle petrofabric inferred from surface-wave anisotropy. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2018JB016598 (2019).

  34. Bastow, I. D., Pilidou, S., Kendall, J.-M. & Stuart, G. W. Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia: evidence from surface waves. Geochem. Geophys. Geosyst. 11, Q0AB05 (2010).

    Article  Google Scholar 

  35. Bacon, C. A., White, R. S. & Rawlinson, N. Depth Constraints on Seismic Anisotropy in Iceland from Shear Wave Splitting Measurements. In Proc. AGU Fall Meeting abstr. S41D-0559 (2019).

  36. Blackman, D. K., Wenk, H.-R. & Kendall, J. M. Seismic anisotropy of the upper mantle 1. Factors that affect mineral texture and effective elastic properties. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001gc000248 (2002).

  37. Blackman, D. K. & Kendall, J.-M. Seismic anisotropy in the upper mantle 2. Predictions for current plate boundary flow models. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001gc000247 (2002).

  38. Long, M. D. & Becker, T. W. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett. 297, 341–354 (2010).

    Article  Google Scholar 

  39. Becker, T. W. & Lebedev, S. Dynamics of the lithosphere and upper mantle in light of seismic anisotropy. Preprint at https://doi.org/10.31223/osf.io/kaznt (2019).

  40. Ben Ismaïl, W. & Mainprice, D. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–157 (1998).

    Article  Google Scholar 

  41. Satsukawa, T. et al. A database of plagioclase crystal preferred orientations (CPO) and microstructures—implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks. Solid Earth 4, 511–542 (2013).

    Article  Google Scholar 

  42. Korenaga, J. & Kelemen, P. B. Melt migration through the oceanic lower crust: a constraint from melt percolation modeling with finite solid diffusion. Earth Planet. Sci. Lett. 156, 1–11 (1998).

    Article  Google Scholar 

  43. Jones, S. M. & Maclennan, J. Crustal flow beneath Iceland. J. Geophys. Res. Solid Earth 110, B09410 (2005).

    Article  Google Scholar 

  44. White, R. S. et al. Lower-crustal intrusion on the North Atlantic continental margin. Nature 452, 460–464 (2008).

    Article  Google Scholar 

  45. Ventosa, S., Schimmel, M. & Stutzmann, E. Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond. Geophys. J. Int. 211, 30–44 (2017).

    Article  Google Scholar 

  46. Bhattacharya, S. N. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies. Ann. Geophys. https://doi.org/10.4401/ag-6806 (2015).

Download references

Acknowledgements

A number of seismometers were borrowed from the Natural Environment Research Council (NERC) SEIS-UK facility (loans 914, 968 and 1071). The work was funded by research grants from the NERC to R.S.W. (numbers NE/H025006/1, NE/F011407/1, NE/M017427/1) and the European Community’s Seventh Framework Program grant no. 308377 (FUTUREVOLC) to R.S.W. The IMAGE project received funding from the European Union’s Seventh Program for research, technological development and demonstration under grant agreement number 608553. Stations for the IMAGE project were provided by the Geophysical Instrument Pool of Potsdam (GFZ). Work undertaken in this study was financially supported by studentships from the NERC and Shell. We thank B. Brandsdóttir, S. Steinþórsson and all those who assisted with fieldwork in Iceland. The British Geological Survey (BGS) kindly provided additional data from their seismometers in northeast Iceland. S.P. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement 790203.

Author information

Authors and Affiliations

Authors

Contributions

O.V., N.R., R.S.W. and R.G.G. have participated in collecting the data in the field. O.V., S.P. and R.G.G. performed the data processing. J.M. assisted in the interpretation of the results. The manuscript was written by O.V., N.R. and R.S.W. with all authors contributing towards discussing and interpreting the results and refining the paper.

Corresponding author

Correspondence to Omry Volk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Stefan Lachowycz. Nature Geoscience thanks Harro Schmeling, James Gaherty and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volk, O., White, R.S., Pilia, S. et al. Oceanic crustal flow in Iceland observed using seismic anisotropy. Nat. Geosci. 14, 168–173 (2021). https://doi.org/10.1038/s41561-021-00702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00702-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing