Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev. 2, 81–98 (2015).

  2. 2.

    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

  3. 3.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

  4. 4.

    Galaz, V. et al. ‘Planetary boundaries’—exploring the challenges for global environmental governance. Curr. Opin. Env. Sust. 4, 80–87 (2012).

  5. 5.

    Galaz, V., Biermann, F., Folke, C., Nilsson, M. & Olsson, P. Global environmental governance and planetary boundaries: an introduction. Ecol. Econ. 81, 1–3 (2012).

  6. 6.

    Biermann, F. Planetary boundaries and Earth system governance: exploring the links. Ecol. Econ. 81, 4–9 (2012).This paper discusses the significant governance challenges associated with Earth system governance and the planetary boundaries framework in particular.

  7. 7.

    Frischknecht, R., Stolz, P. & Tschümperlin, L. National environmental footprints and planetary boundaries: from methodology to policy implementation 59th LCA forum, Swiss Federal Institute of Technology, Zürich, June 12, 2015. Int. J. Life Cycle Ass . 21, 601–605 (2016).

  8. 8.

    Webb, T. J. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).This review discusses the fundamental differences in ecosytem structure and function between marine and terrestrial systems.

  9. 9.

    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

  10. 10.

    Pauly, D., Watson, R. & Alder, J. Global trends in world fisheries: impacts on marine ecosystems and food security. Phil. Trans. R. Soc. B 360, 5–12 (2005).

  11. 11.

    Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).

  12. 12.

    Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

  13. 13.

    West, P. C., Narisma, G. T., Barford, C. C., Kucharik, C. J. & Foley, J. A. An alternative approach for quantifying climate regulation by ecosystems. Front. Ecol. Env. 9, 126–133 (2011).

  14. 14.

    Snyder, P. K., Delire, C. & Foley, J. A. Evaluating the influence of different vegetation biomes on the global climate. Clim. Dynam. 23, 279–302 (2004).

  15. 15.

    Loveland, T. R. et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330 (2000).

  16. 16.

    Delire, C. et al. Simulated response of the atmosphere–ocean system to deforestation in the Indonesian Archipelago. Geophys. Res. Lett. 28, 2081–2084 (2001).

  17. 17.

    Adams, E. E. World Forest Area Still on the Decline (Earth Policy Institute, New Brunswick, 2012); http://www.earth-policy.org/?/indicators/C56/.

  18. 18.

    Borges, A. V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28, 3–27 (2005).

  19. 19.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Env. 9, 552–560 (2011).

  20. 20.

    Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

  21. 21.

    van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009).

  22. 22.

    Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

  23. 23.

    Betts, A. K. & Ball, J. H. Albedo over the boreal forest. J. Geophys. Res.-Atmos. 102, 28901–28909 (1997).

  24. 24.

    Allison, I., Brandt, R. E. & Warren, S. G. East Antarctic sea ice: albedo, thickness distribution, and snow cover. J. Geophys. Res.-Oceans 98, 12417–12429 (1993).

  25. 25.

    Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).

  26. 26.

    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

  27. 27.

    Gittman, R. K., Scyphers, S. B., Smith, C. S., Neylan, I. P. & Grabowski, J. H. Ecological consequences of shoreline hardening: a meta-analysis. Bioscience 66, 763–773 (2016).

  28. 28.

    Collie, J. et al. Indirect effects of bottom fishing on the productivity of marine fish. Fish Fish. 18, 619–637 (2017).

  29. 29.

    Berg, T., Fürhaupter, K., Teixeira, H., Uusitalo, L. & Zampoukas, N. The Marine Strategy Framework Directive and the ecosystem-based approach – pitfalls and solutions. Mar. Pollut. Bull. 96, 18–28 (2015).

  30. 30.

    Rice, J. et al. Indicators for sea-floor integrity under the European Marine Strategy Framework Directive. Ecol. Indic. 12, 174–184 (2012).

  31. 31.

    Samhouri, J. F., Haupt, A. J., Levin, P. S., Link, J. S. & Shuford, R. Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES J. Mar. Sci. 71, 1205–1215 (2014).

  32. 32.

    Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).

  33. 33.

    Liu, C., Kroeze, C., Hoekstra, A. Y. & Gerbens-Leenes, W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol. Indic. 18, 42–49 (2012).

  34. 34.

    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 1, 140048 (2014).

  35. 35.

    Capone, D. G. & Hutchins, D. A. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 6, 711–717 (2013).

  36. 36.

    Reed, D. C. & Harrison, J. A. Linking nutrient loading and oxygen in the coastal ocean: a new global scale model. Glob. Biogeochem. Cycles 30, 447–459 (2016).

  37. 37.

    Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353, 705–707 (2016).

  38. 38.

    McCauley, D. J. et al. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409 (2012).

  39. 39.

    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).This review explores the implications of nutrient enrichment for oceanic nutrient cycles and microbial activity.

  40. 40.

    Luong, A. D. et al. Inferring time-variable effects of nutrient enrichment on marine ecosystems using inverse modelling and ecological network analysis. Sci. Total Environ. 493, 708–718 (2014).

  41. 41.

    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).

  42. 42.

    Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

  43. 43.

    Eero, M., Andersson, H. C., Almroth-Rosell, E. & MacKenzie, B. R. Has eutrophication promoted forage fish production in the Baltic Sea? Ambio 45, 649–660 (2016).

  44. 44.

    Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255 (2010). 

  45. 45.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

  46. 46.

    Jennings, S. & Wilson, R. W. Fishing impacts on the marine inorganic carbon cycle. J. Appl. Ecol. 46, 976–982 (2009).

  47. 47.

    Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).This review explores the advantages and disadvantages of different approaches to characterizing a planetary boundary focused on biodiversity and biosphere integrity.

  48. 48.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

  49. 49.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

  50. 50.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

  51. 51.

    Jennings, S. & Collingridge, K. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS ONE 10, e0133794 (2015).

  52. 52.

    Birks, H. J. B., Felde, V. A. & Seddon, A. W. R. Biodiversity trends within the Holocene. Holocene 26, 994–1001 (2016).

  53. 53.

    Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25, 506–511 (2015).

  54. 54.

    Scott, F., Blanchard, J. L. & Andersen, K. H. mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125 (2014).

  55. 55.

    Fulton, E. A., Smith, A. D. M. & Punt, A. E. Which ecological indicators can robustly detect effects of fishing? ICES J. Mar. Sci. 62, 540–551 (2005).

  56. 56.

    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, 41 (2012).

  57. 57.

    Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Env. Resour. 39, 363–391 (2014).

  58. 58.

    Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).

  59. 59.

    Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).

  60. 60.

    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

  61. 61.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

  62. 62.

    Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).

  63. 63.

    Caldeira, K., Bala, G. & Cao, L. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41, 231–256 (2013).

  64. 64.

    Cornell, S. On the system properties of the planetary boundaries. Ecol. Soc. 17, r2 (2012).

  65. 65.

    de Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

  66. 66.

    Anderies, J. M., Carpenter, S. R., Steffen, W. & Rockstrom, J. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett. 8, 044048 (2013).

  67. 67.

    Selkoe, K. A. et al. Principles for managing marine ecosystems prone to tipping points. Ecosyst. Health Sustain. 1, 1–18 (2015).

  68. 68.

    Walters, C. J. & Holling, C. S. Large-scale management experiments and learning by doing. Ecology 71, 2060–2068 (1990).

  69. 69.

    van Vuuren, D. P., Lucas, P. L., Hayha, T., Cornell, S. E. & Stafford-Smith, M. Horses for courses: analytical tools to explore planetary boundaries. Earth Syst. Dynam. 7, 267–279 (2016).

  70. 70.

    Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).

  71. 71.

    Griffith, G. P., Fulton, E. A., Gorton, R. & Richardson, A. J. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conserv. Biol. 26, 1145–1152 (2012).

  72. 72.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

  73. 73.

    De La Mare, W. K. Tidier fisheries management requires a new MOP (management-oriented paradigm). Rev. Fish Biol. Fish. 8, 349–356 (1998).

  74. 74.

    Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).

  75. 75.

    Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).

  76. 76.

    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Env. Resour. 37, 421–448 (2012).

  77. 77.

    Galaz, V., Crona, B., Osterblom, H., Olsson, P. & Folke, C. Polycentric systems and interacting planetary boundaries - emerging governance of climate change–ocean acidification–marine biodiversity. Ecol. Econom. 81, 21–32 (2012).

  78. 78.

    Paavola, J. Institutions and environmental governance: a reconceptualization. Ecol. Econom. 63, 93–103 (2007).

  79. 79.

    Boyd, E., Nykvist, B., Borgström, S. & Stacewicz, I. A. Anticipatory governance for social–ecological resilience. Ambio 44, 149–161 (2015).

  80. 80.

    Guston, D. H. Innovation policy: not just a jumbo shrimp. Nature 454, 940–941 (2008).This commentary explores the concept of anticipatory governance and how this approach may better equip policymakers dealing with uncertainty.

  81. 81.

    Guston, D. H. Understanding ‘anticipatory governance’. Soc. Stud. Sci. 44, 218–242 (2014).

  82. 82.

    Raworth, K. A Safe and Just Space for Humanity: Can We Live Within the Doughnut? (Oxfam, Oxford, 2012).

  83. 83.

    Sadowski, J. & Guston, D. H. ‘You caught me off guard’: probing the futures of complex engineered nanomaterials. J. Nanopart. Res. 18, 208 (2016).

  84. 84.

    Fabricius, K., De’ath, G., McCook, L., Turak, E. & Williams, D. M. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar. Pollut. Bull. 51, 384–398 (2005).

  85. 85.

    Niiranen, S. et al. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web. Glob. Change Biol. 19, 3327–3342 (2013).

  86. 86.

    Duplisea, D. E., Jennings, S., Malcolm, S. J., Parker, R. & Sivyer, D. B. Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea. Geochem. Trans. 2, 112–112 (2001).

  87. 87.

    Seitzinger, S. P. et al. Global river nutrient export: a scenario analysis of past and future trends. Glob. Biogeochem. Cycles 24, GB0A08 (2010).

  88. 88.

    Egeghy, P. P. et al. The exposure data landscape for manufactured chemicals. Sci. Total Environ. 414, 159–166 (2012).

  89. 89.

    Jang, Y. C. et al. Estimating the global inflow and stock of plastic marine debris using material flow analysis: a preliminary approach. J. Korean Soc. Mar. Environ. Energy 18, 263–273 (2015).

  90. 90.

    Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).

  91. 91.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, New York, 2013).

  92. 92.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

  93. 93.

    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5  °C and 2  °C. Earth Syst. Dynam. 7, 327–351 (2016).

  94. 94.

    Norström, A. V. et al. Guiding coral reef futures in the Anthropocene. Front. Ecol. Env. 14, 490–498 (2016).

  95. 95.

    WMO Scientific Assessment of Ozone Depletion: 2006 Global Ozone Research and Monitoring Project Report No. 50 (NOAA, NASA, UNEP, WMO and EC, Geneva, 2007).

  96. 96.

    Zepp, R. G., Erickson Iii, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).

  97. 97.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

  98. 98.

    Farmery, A. K., Jennings, S., Gardner, C., Watson, R. A. & Green, B. S. Naturalness as a basis for incorporating marine biodiversity into life cycle assessment of seafood. Int. J. Life Cycle Ass. 22, 1571–1587 (2017).

  99. 99.

    Jennings, S., Dinmore, T. A., Duplisea, D. E., Warr, K. J. & Lancaster, J. E. Trawling disturbance can modify benthic production processes. J. Anim. Ecol. 70, 459–475 (2001).

  100. 100.

    Hiddink, J. G. et al. Cumulative impacts of seabed trawl disturbance on benthic biomass, production, and species richness in different habitats. Can. J. Fish. Aquat. Sci. 63, 721–736 (2006).

  101. 101.

    Reid, P. C. et al. in Advances in Marine Biology Vol. 56 (ed. Sims, D. W.) 1–150 (Elsevier Academic, San Diego, 2009).

  102. 102.

    Alleway, H. K. & Connell, S. D. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conserv. Biol. 29, 795–804 (2015).

  103. 103.

    Gittman, R. K. et al. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Env. 13, 301–307 (2015).

  104. 104.

    Brewer, P. Planetary boundaries: consider all consequences. Nat. Rep. Clim. Change 3, 117–118 (2009).

  105. 105.

    Rummer, J. L. & Munday, P. L. Climate change and the evolution of reef fishes: past and future. Fish Fish. 18, 22–39 (2017).This review explores the wide-reaching impacts of ocean acidification on marine ecosystems — beyond simply changing aragonite saturation state.

  106. 106.

    National Research Council of the National Academies Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean (National Academies Press, Washington DC, 2010).

  107. 107.

    Gephart, J. A. et al. The ‘seafood gap’ in the food-water nexus literature—issues surrounding freshwater use in seafood production chains. Adv. Water Resour. https://doi.org/10.1016/j.advwatres.2017.03.025 (2017).

  108. 108.

    Blanchard, J. L. et al. Cross-sectoral sustainability challenges for fisheries-dependent countries. Nat. Ecol. Evol. (in the press).

Download references


This project is supported by funding from the University of Tasmania and the Commonwealth Scientific and Industrial Research Organisation via the Centre for Marine Socioecology. R.A.W. acknowledges support from the Australian Research Council (Discovery project DP140101377) and E.J.M.-G. acknowledges a Pew Marine Fellowship. Thank you to R. Little for discussions relating to this paper. Availability of data used to produce Fig. 3 is described in the Supplementary Information.

Author information


  1. Centre for Marine Socioecology, Private Bag 129, Hobart, Tasmania, 7001, Australia

    • Kirsty L. Nash
    • , Christopher Cvitanovic
    • , Elizabeth A. Fulton
    • , Reg A. Watson
    •  & Julia L. Blanchard
  2. Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, 7001, Australia

    • Kirsty L. Nash
    • , Christopher Cvitanovic
    • , Reg A. Watson
    •  & Julia L. Blanchard
  3. Faculty of Law, University of Tasmania, Private Bag 129, Hobart, Tasmania, 7001, Australia

    • Christopher Cvitanovic
  4. CSIRO, Castray Esplanade, Battery Point, Tasmania, 2004, Australia

    • Elizabeth A. Fulton
  5. National Centre for Ecological Analysis and Synthesis, University of California, 735 State St, Santa Barbara, CA, 93101-5504, USA

    • Benjamin S. Halpern
  6. Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93101, USA

    • Benjamin S. Halpern
  7. Imperial College London, Silwood Park Campus, Burkhurst Road, Ascot, SL5 7PY, UK

    • Benjamin S. Halpern
  8. Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK

    • E. J. Milner-Gulland


  1. Search for Kirsty L. Nash in:

  2. Search for Christopher Cvitanovic in:

  3. Search for Elizabeth A. Fulton in:

  4. Search for Benjamin S. Halpern in:

  5. Search for E. J. Milner-Gulland in:

  6. Search for Reg A. Watson in:

  7. Search for Julia L. Blanchard in:


K.L.N. and J.L.B. conceived the idea for the Review. K.L.N. wrote the majority of the manuscript. R.A.W. performed the HANPP mapping. All authors contributed to writing and editing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Kirsty L. Nash.

Electronic supplementary material

  1. Supplementary Information

    Supplementary notes, figures and references

About this article

Publication history