Article

Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt

  • Nature Ecology & Evolution 1, Article number: 0141 (2017)
  • doi:10.1038/s41559-017-0141
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.

  • Subscribe to Nature Ecology & Evolution for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , & The deep, dark energy biosphere: intraterrestrial life on Earth. Annu. Rev. Earth Planet. Sci. 40, 551–568 (2012).

  2. 2.

    , , & Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol. J. 21, 241–246 (2004).

  3. 3.

    , , & Putative cryptoendolithic life in Devonian pillow basalt, Rheinisches Schiefergebirge, Germany. Geobiology 6, 125–135 (2008).

  4. 4.

    , , , & Evidence for cryptoendolithic life in Devonian pillow basalts of Variscan orogens, Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 283, 120–125 (2009).

  5. 5.

    et al. Fossilized fungi in subseafloor Eocene basalts. Geology 40, 163–166 (2012).

  6. 6.

    , , , & Fungal colonies in open fractures of subseafloor basalt. Geo-Mar. Lett. 33, 233–243 (2013).

  7. 7.

    et al. Zygomycetes in vesicular basanites from Vesteris Seamount, Greenland Basin – a new type of cryptoendolithic fungi. PLoS ONE 10, e0133368 (2015).

  8. 8.

    . et al. in Modern Approaches in Solid Earth Sciences Vol. 4 (eds Dilek, Y., Furnes, H. & Muehlenbachs, K.) 1–68 (Springer, 2008).

  9. 9.

    & Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc. Natl Acad. Sci. USA 111, 8380–8385 (2014).

  10. 10.

    , & Paleoarchean trace fossils in altered volcanic glass. Proc. Natl Acad. Sci. USA 112, 6892–6897 (2015).

  11. 11.

    & Questioning the biogenicity of titanite mineral trace fossils in Archean pillow lavas. Proc. Natl Acad. Sci. USA 112, E1390–E1391 (2015).

  12. 12.

    & A hierarchical system for evaluating the biogenicity of metavolcanic- and ultramafic-hosted microalteration textures in the search for extraterrestrial life. Astrobiology 15, 901–921 (2015).

  13. 13.

    & Atlas of alteration textures in volcanic glass from the ocean basins. Geosphere 39, 317–341 (2013).

  14. 14.

    Interpretation of crystalline spheroidal structures in igneous rocks. Lithos 6, 235–244 (1973).

  15. 15.

    , , , & Mechanisms of microtunneling in rock substrates: distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8, 245–255 (2010).

  16. 16.

    , & Biogenic versus metamorphic origins of diverse microtubes in 2.7 Gyr old volcanic ashes: multi-scale investigations. Earth Planet. Sci. Lett. 312, 37–47 (2011).

  17. 17.

    & Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3, 727–738 (2003).

  18. 18.

    Poor preservation potential of organics in Meridiani Planum hematite-bearing sedimentary rocks. J. Geophys. Res. 109, E12007 (2004).

  19. 19.

    et al. Fossilized iron bacteria reveal pathway to biological origin of banded iron formation. Nat. Commun. 4, 2050 (2013).

  20. 20.

    , & Alteration of the oceanic crust: processes and timing. Earth Planet. Sci. Lett. 52, 311–327 (1981).

  21. 21.

    The morphology, cytology, and taxonomy of the Actinomycetes. Annu. Rev. Microbiol. 3, 23–54 (1949).

  22. 22.

    & Slide culture observations of two freshwater Actinomycetes. Trans. Am. Microsc. Soc. 85, 390–398 (1966).

  23. 23.

    . et al. (eds) Bergey's Manual of Systematic Bacteriology Vol. 5: The Actinobacteria 2nd edn (Springer, 2012).

  24. 24.

    in Extremophiles Handbook (eds Horikoshi, K. et al.) 1203–1240 (Springer, 2011).

  25. 25.

    , , , & Marine subsurface eukaryotes: the fungal majority. Environ. Microbiol. 13, 172–183 (2011).

  26. 26.

    , & Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS ONE 8, e56335 (2013).

  27. 27.

    . et al. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland. Front. Microbiol. 6, 573 (2015).

  28. 28.

    , & The igneous oceanic crust – Earth’s largest fungal habitat? Fungal Ecol. 20, 249–255 (2016).

  29. 29.

    , , , & Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front. Microbiol. 7, 846 (2016).

  30. 30.

    Mycorrhiza in the Gramineae: I. Vesicular-arbuscular endophytes, with special reference to the external phase. J. Brit. Mycolog. Soc. 42, 421–438 (1959).

  31. 31.

    , , & Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol. 12, 135–141 (2004).

  32. 32.

    et al. Deep-biosphere consortium of fungi and prokaryotes in Eocene sub-seafloor basalts. Geobiology 12, 489–496 (2014).

  33. 33.

    et al. A fungal-prokaryotic consortium at the basalt-zeolite interface in subseafloor igneous crust. PLoS ONE 10, e0140106 (2015).

  34. 34.

    & A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5, e12759 (2010).

  35. 35.

    , & Hyphal anastomosis in Phytophthora capsici. Phytopathology 64, 149–150 (1974).

  36. 36.

    , & Self-anastomosing ability and vegetative incompatibility of Tuber borchii isolates. Mycorrhiza 17, 667–675 (2007).

  37. 37.

    , & Development and extension of mycelial cords in soil at different temperatures and moisture contents. Mycol. Res. 92, 383–391 (1989).

  38. 38.

    & The opalozoan Apusomonas is related to the common ancestor of animals, fungi, and choanoflagellates. Proc. R. Soc. Lond. B 261, 1–6 (1995).

  39. 39.

    et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443, 818–822 (2006).

  40. 40.

    An overview of the phylogeny and diversity of eukaryotes. J. Syst. Evol. 46, 263–273 (2008).

  41. 41.

    et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).

  42. 42.

    , , & A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2 (2004).

  43. 43.

    , , & Fungi evolution revisited: application of the penalized likelihood method to a Bayesian fungal phylogeny provides a new perspective on phylogenetic relationships and divergence dates of Ascomycota groups. J. Mol. Evol. 60, 726–735 (2005).

  44. 44.

    ., ., & in The Timetree of Life (eds Hedges, S. B. & Kumar, S.) 116–120 (Oxford Univ. Press, 2009).

  45. 45.

    , , & Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

  46. 46.

    ., & Fossil Fungi (Elsevier, 2015).

  47. 47.

    ., ., & in Evolutionary Transitions to Multicellular Life (eds Ruiz-Trillo, I. & Nedelcu, A. M.) 3–29 (Springer, 2015).

  48. 48.

    & Marine Mycology (Academic, 1979).

  49. 49.

    et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18, 18.1.1FC (2015).

  50. 50.

    et al. XMapTools: a MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci. 62, 227–240 (2014).

  51. 51.

    , , & A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib. Mineral. Petrol. 165, 723–735 (2013).

  52. 52.

    & Regridding reconstruction algorithm for real-time tomographic imaging. J. Synchrotron Radiat. 19, 1029–1037 (2012).

  53. 53.

    , , & O2 constraints from Paleoproterozoic detrital pyrite and uraninite. GSA Bull. 126, 813–830 (2014).

Download references

Acknowledgements

Our work has been supported by the Agouron Institute, Swedish Research Council (2012-4364, 2013-4290), Danish National Research Foundation (DNRF53), Australian Research Council (DP110103660, DP140100512), Paul Scherrer Institute (20130185, 20141047), Australian Microscopy & Microanalysis Research Facility, National Science Foundation (EAR-05-45484), NASA Astrobiology Institute (NNA04CC09A), Natural Sciences and Engineering Research Council, and the European Commission CALIPSO programme (312284). We thank V. Belivanova for technical assistance, P. von Knorring for drafting Supplementary Fig. 6, J. Peckmann for supplying images for Supplementary Fig. 8c,d and A. Tehler for discussions.

Author information

Affiliations

  1. Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, SE-10405 Stockholm, Sweden.

    • Stefan Bengtson
    •  & Magnus Ivarsson
  2. Department of Applied Geology, Curtin University, Bentley, Western Australia 6102, Australia.

    • Birger Rasmussen
    •  & Janet Muhling
  3. School of Earth and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia.

    • Janet Muhling
  4. Department of Geological Sciences, Stockholm University, SE-10691 Stockholm, Sweden.

    • Curt Broman
  5. Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland.

    • Federica Marone
    •  & Marco Stampanoni
  6. Institute for Biomedical Engineering, University and ETH Zürich, CH-8092 Zürich, Switzerland.

    • Marco Stampanoni
  7. Department of Earth Sciences, University of California, Riverside, California 92521, USA.

    • Andrey Bekker

Authors

  1. Search for Stefan Bengtson in:

  2. Search for Birger Rasmussen in:

  3. Search for Magnus Ivarsson in:

  4. Search for Janet Muhling in:

  5. Search for Curt Broman in:

  6. Search for Federica Marone in:

  7. Search for Marco Stampanoni in:

  8. Search for Andrey Bekker in:

Contributions

A.B. provided the material and geological information; B.R. discovered the filamentous structures; S.B., B.R. and M.I. designed the study; S.B., B.R., M.I., J.M. and C.B. performed the investigation; S.B. and B.R. wrote the paper with input from other co-authors; and M.S. and F.M. designed and operated the TOMCAT beamline.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Stefan Bengtson or Birger Rasmussen.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Discussion; Supplementary Figures; Supplementary Tables

Videos

  1. 1.

    Supplementary Video 1

    Ongeluk vesicle with filamentous fossils. SRXTM surface/volume rendering, 32.5 µm thick virtual slice passing through specimen. Note NW-SE-trending thin veins connecting the vesicle with the surroundings. Swedish Museum of Natural History X6137, same vesicle as in Fig. 3.