Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silylated silicon–carbonyl complexes as mimics of ubiquitous transition-metal carbonyls

Subjects

Abstract

Transition-metal–carbonyl complexes are common organometallic reagents that feature metal–CO bonds. These complexes have proven to be powerful catalysts for various applications. By contrast, silicon–carbonyl complexes, organosilicon reagents poised to be eco-friendly alternatives for transition-metal carbonyls, have remained largely elusive. They have mostly been explored theoretically and/or through low-temperature matrix isolation studies, but their instability had typically precluded isolation under ambient conditions. Here we present the synthesis, isolation and full characterization of stable silyl-substituted silicon–carbonyl complexes, along with bonding analysis. Initial reactivity investigations showed examples of CO liberation, which could be induced either thermally or photochemically, as well as substitution and functionalization of the CO moiety. Importantly, the complexes exhibit strong Si–CO bonding, with CO→Si σ-donation and Si→CO π-backbonding, which is reminiscent of transition-metal carbonyls. This similarity between the abundant semi-metal silicon and rare transition metals may provide new opportunities for the development of silicon-based catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected examples of isolable main group carbonyl complexes.
Fig. 2: Synthesis and transition-metal mimic chemistry of silicon–carbonyl complex [(TMS)3Si](tBu3Si)SiCO (3) (TMS = trimethylsilyl).
Fig. 3: Molecular structures of compounds 3 and 5 with thermal ellipsoids set at 50% probability as derived from SC-XRD analysis.
Fig. 4: Bonding analysis of [(TMS)3Si](tBu3Si)SiCO (3).
Fig. 5: Reactivity of carbonyl complexes with azides.

Similar content being viewed by others

Data availability

X-ray crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre under the reference numbers CCDC 1976834 (3) and CCDC 1976835 (5) via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings are contained in the main text or the Supplementary Information.

References

  1. Herrmann, W. A. 100 years of metal carbonyls: a serendipitous chemical discovery of major scientific and industrial impact. J. Organomet. Chem. 383, 21–44 (1990).

    Article  Google Scholar 

  2. Werner, H. Complexes of carbon monoxide and its relatives: An organometallic family celebrates its birthday. Angew. Chem. Int. Ed. 29, 1077–1089 (1990).

    Article  Google Scholar 

  3. Holleman, A. F., Wiberg, E. & Wiberg, N. Lehrbuch der Anorganischen Chemie Vol. 102 (de Gruyter, 2007).

  4. Behrens, H. The chemistry of metal carbonyls: ‘the life work of Walter Hieber’. J. Organomet. Chem. 94, 139–159 (1975).

    Article  CAS  Google Scholar 

  5. Beller, M. in Topics in Organometallic Chemistry Vol. 18 (Springer-Verlag, 2006).

  6. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  Google Scholar 

  7. Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).

    Article  CAS  Google Scholar 

  8. Weetman, C. & Inoue, S. The road travelled: after main-group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

    Article  CAS  Google Scholar 

  9. Légaré, M.-A., Pranckevicius, C. & Braunschweig, H. Metallomimetic chemistry of boron. Chem. Rev. 119, 8231–8261 (2019).

    Article  Google Scholar 

  10. Braunschweig, H. et al. Multiple complexation of CO and related ligands to a main-group element. Nature 522, 327–330 (2015).

    Article  CAS  Google Scholar 

  11. Puschmann, F. F. et al. Phosphination of carbon monoxide: A simple synthesis of sodium phosphaethynolate (NaOCP). Angew. Chem. Int. Ed. 50, 8420–8423 (2011).

    Article  CAS  Google Scholar 

  12. Hansmann, M. M. & Bertrand, G. Transition-metal-like behavior of main group elements: ligand exchange at a phosphinidene. J. Am. Chem. Soc. 138, 15885–15888 (2016).

    Article  CAS  Google Scholar 

  13. Wu, X. et al. Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361, 912–916 (2018).

    Article  CAS  Google Scholar 

  14. Lavallo, V., Canac, Y., Donnadieu, B., Schoeller, W. W. & Bertrand, G. CO fixation to stable acyclic and cyclic alkyl amino carbenes: Stable amino ketenes with a small HOMO–LUMO gap. Angew. Chem. Int. Ed. 45, 3488–3491 (2006).

    Article  CAS  Google Scholar 

  15. Hudnall, T. W. & Bielawski, C. W. An N,N′-diamidocarbene: studies in C–H insertion, reversible carbonylation, and transition-metal coordination chemistry. J. Am. Chem. Soc. 131, 16039–16041 (2009).

    Article  CAS  Google Scholar 

  16. Lee, V. Y. Organosilicon Compounds: Theory and Experiment (Synthesis) Vol. 1 (Academic Press, 2017).

  17. Pearsall, M. A. & West, R. The reactions of diorganosilylenes with carbon monoxide. J. Am. Chem. Soc. 110, 7228–7229 (1988).

    Article  CAS  Google Scholar 

  18. Arrington, C. A., Petty, J. T., Payne, S. E. & Haskins, W. C. K. The reaction of dimethylsilylene with carbon monoxide in low-temperature matrices. J. Am. Chem. Soc. 110, 6240–6241 (1988).

    Article  CAS  Google Scholar 

  19. Hamilton, T. P. & Schaefer, H. F. III Silaketene: A product of the reaction between silylene and carbon monoxide? J. Chem. Phys. 90, 1031–1035 (1989).

    Article  CAS  Google Scholar 

  20. Tacke, M. et al. Complexes of decamethylsilicocene: Cp2*Si(CO) and Cp2*Si(N2). Z. Anorg. Allg. Chem. 619, 865–868 (1993).

    Article  CAS  Google Scholar 

  21. Maier, G., Reisenauer, H. P. & Egenolf, H. Quest for silaketene: A matrix-spectroscopic and theoretical study. Organometallics 18, 2155–2161 (1999).

    Article  CAS  Google Scholar 

  22. Becerra, R., Cannady, J. P. & Walsh, R. Silylene does react with carbon monoxide: some gas-phase kinetic and theoretical studies. J. Phys. Chem. A 105, 1897–1903 (2001).

    Article  CAS  Google Scholar 

  23. Bornemann, H. & Sander, W. Reactions of methyl(phenyl)silylene with CO and PH3—the formation of acid–base complexes. J. Organomet. Chem. 641, 156–164 (2002).

    Article  CAS  Google Scholar 

  24. Protchenko, A. V. et al. Reduction of carbon oxides by an acyclic silylene: reductive coupling of CO. Angew. Chem. Int. Ed. 58, 1808–1812 (2019).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Silicon-mediated selective homo- and heterocoupling of carbon monoxide. J. Am. Chem. Soc. 141, 626–634 (2019).

    Article  CAS  Google Scholar 

  26. Xiong, Y., Yao, S., Szilvási, T., Ruzicka, A. & Driess, M. Homocoupling of CO and isocyanide mediated by a C,C′-bis(silylenyl)-substituted ortho-carborane. Chem. Commun. 56, 747–750 (2020).

    Article  CAS  Google Scholar 

  27. Ganesamoorthy, C. et al. A silicon–carbonyl complex stable at room temperature. Nat. Chem. 12, 608–614 (2020).

    Article  CAS  Google Scholar 

  28. Reiter, D. et al. Disilene-silylene interconversion: A synthetically accessible acyclic bis(silyl)silylene. J. Am. Chem. Soc. 141, 13536–13546 (2019).

    Article  CAS  Google Scholar 

  29. Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules Vol. 4 (Van Nostrand Reinhold Company, 1979).

  30. Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  Google Scholar 

  31. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

  32. Macchi, P. & Sironi, A. Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord. Chem. Rev. 238–239, 383–412 (2003).

    Article  Google Scholar 

  33. Macchi, P. & Sironi, A. in The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (eds Matta, C. F. & Boyd, R. J.) Ch. 13 (Wiley-VCH, Weinheim, 2007).

  34. Schweizer, J. I. et al. A disilene base adduct with a dative Si–Si single bond. Angew. Chem. Int. Ed. 55, 1782–1786 (2016).

    Article  CAS  Google Scholar 

  35. Stanford, M. W. et al. Intercepting the disilene-silylsilylene equilibrium. Angew. Chem. Int. Ed. 58, 1329–1333 (2019).

    Article  CAS  Google Scholar 

  36. Cabeza, J. A., Van der Maelen, J. F. & García-Granda, S. Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3(μ-H)23-MeImCH)(CO)9] (Me2Im = 1,3-dimethylimidazol-2-ylidene). Organometallics 28, 3666–3672 (2009).

    Article  CAS  Google Scholar 

  37. Wendel, D. et al. From Si(ii) to Si(iv) and back: Reversible intramolecular carbon–carbon bond activation by an acyclic iminosilylene. J. Am. Chem. Soc. 139, 8134–8137 (2017).

    Article  CAS  Google Scholar 

  38. Wendel, D. et al. Silicon and oxygen’s bond of affection: an acyclic three-coordinate silanone and its transformation to an iminosiloxysilylene. J. Am. Chem. Soc. 139, 17193–17198 (2017).

    Article  CAS  Google Scholar 

  39. Boyarskiy, V. P., Bokach, N. A., Luzyanin, K. V. & Kukushkin, V. Y. Metal-mediated and metal-catalyzed reactions of isocyanides. Chem. Rev. 115, 2698–2779 (2015).

    Article  CAS  Google Scholar 

  40. Takeda, N., Kajiwara, T., Suzuki, H., Okazaki, R. & Tokitoh, N. Synthesis and properties of the first stable silylene–isocyanide complexes. Chem. Eur. J. 9, 3530–3543 (2003).

    Article  CAS  Google Scholar 

  41. Abe, T., Iwamoto, T., Kabuto, C. & Kira, M. Synthesis, structure, and bonding of stable dialkylsilaketenimines. J. Am. Chem. Soc. 128, 4228–4229 (2006).

    Article  CAS  Google Scholar 

  42. Mansikkamäki, A., Power, P. P. & Tuononen, H. M. Computational analysis of n→π* back-bonding in metallylene–isocyanide complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph). Organometallics 32, 6690–6700 (2013).

    Article  Google Scholar 

  43. Beck, W. & Fehlhammer, W. P. Reactions of metal carbonyls with the azide ion and—vice versa—reactions of azido complexes with carbon monoxide: isocyanato complexes. analogous reactions in NO+/N3 transition metal chemistry. Z. Anorg. Allg. Chem. 636, 157–162 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. C. Holthausen and J. I. Schweizer for fruitful discussions, computational resources and advice. Quantum chemical calculations were performed in part at the Leibniz Supercomputing Center of the Bavarian Academy of Science and Humanities. We acknowledge M. Muhr (R. A. Fischer) for the LIFDI-MS measurement. We thank the WACKER Chemie AG and the European Research Council (SILION 637394) for continued financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.R. and R.H. planned and carried out all experiments and analysed the data. A.P. designed and conducted the computational investigations. P.F. performed the SC-XRD measurements. S.I. designed and conceived the project. D.R. and S.I. wrote the manuscript with input and critical revision from all authors.

Corresponding author

Correspondence to Shigeyoshi Inoue.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Discussion and Tables 1–27.

Supplementary Data 1

Cif file compound 3.

Supplementary Data 2

Cif file compound 5.

Supplementary Data

Cartesian coordinates for the optimized structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, D., Holzner, R., Porzelt, A. et al. Silylated silicon–carbonyl complexes as mimics of ubiquitous transition-metal carbonyls. Nat. Chem. 12, 1131–1135 (2020). https://doi.org/10.1038/s41557-020-00555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00555-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing