Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Progress in the development of small-celestial-body anchoring robots

Abstract

The exploration of small celestial bodies (SCBs) is important for understanding the evolution of the Solar System and the origin of life on Earth, as well as developing and utilizing resources. Regolith sampling and in situ analysis are effective exploration methods, and the robots used to anchor probes on SCBs are crucial for such in situ explorations. This Perspective reviews missions to explore SCBs and briefly analyses existing exploration methods. Small-celestial-body anchoring robots are systematically summarized, including the basic concepts, structure and composition and application characteristics. Next, the influence and challenges of extreme space environments and the effects of the unknown surface properties of SCBs on SCB anchoring robots are explored to help determine crucial issues in developing these robots. Finally, a comprehensive overview of the progress of SCB anchoring robots is presented, drawn from the macroscopic development of SCB exploration, maturation and utilization missions. Innovations in SCB anchoring robots will continue to assist in SCB exploration missions and we expect them to enable remarkable achievements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SCB exploration missions and methods.
Fig. 2: Schematic diagrams of probe anchoring methods.
Fig. 3: Trends in the development SCB exploration missions and SCBARs.

Similar content being viewed by others

References

  1. DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    Article  ADS  Google Scholar 

  2. Bus, S. J. & Binzel, R. P. Phase II of the small main-belt asteroid spectroscopic survey: a feature-based taxonomy. Icarus 158, 146–177 (2002).

    Article  ADS  Google Scholar 

  3. Demeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009).

    Article  ADS  Google Scholar 

  4. Hein, A. M., Matheson, R. & Fries, D. A techno-economic analysis of asteroid mining. Acta Astronaut. 168, 104–115 (2020).

    Article  ADS  Google Scholar 

  5. Muñoz Caro, G. et al. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416, 403–406 (2002).

    Article  ADS  Google Scholar 

  6. Scheeres, D. J. & Sánchez, P. Implications of cohesive strength in asteroid interiors and surfaces and its measurement. Prog. Earth Planet. Sci. 5, 25 (2018).

    Article  ADS  Google Scholar 

  7. Von Rosenvinge, T. T., Brandt, J. C. & Farquhar, R. W. The international cometary explorer mission to comet Giacobini-Zinner. Science 232, 353–356 (1986).

    Article  ADS  Google Scholar 

  8. Clark, B. E. et al. in Primitive Meteorites and Asteroids (ed. Abreu, N.) 1–57 (Elsevier, 2018).

  9. Okazaki, R., Sawada, H. & Yamanouchi, S. et al. Hayabusa2 sample catcher and container: metal-seal system for vacuum encapsulation of returned samples with volatiles and organic compounds recovered from C-type asteroid Ryugu. Space Sci. Rev. 208, 107–124 (2017).

    Article  ADS  Google Scholar 

  10. Ajluni, T. et al. OSIRIS-REx returning the asteroid sample. In IEEE Aerospace Conference 1–15 (IEEE, 2015).

  11. Bierhaus, E. B., Clark, B. C. & Harris, J. W. et al. The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism (TAGSAM). Space Sci. Rev. 214, 107 (2018).

    Article  ADS  Google Scholar 

  12. Ho, T. M., Baturkin, V. & Grimm, C. et al. MASCOT—the mobile asteroid surface scout onboard the Hayabusa2 mission. Space Sci. Rev. 208, 339–374 (2017).

    Article  ADS  Google Scholar 

  13. Yoshimitsu, T. Development of autonomous rover for asteroid surface exploration. In International Conference on Robotics and Automation 2529–2534 (IEEE, 2004).

  14. Schindler, K. et al. PANIC—a surface science package for the in situ characterization of a near-Earth asteroid. Acta Astronaut. 68, 1800–1810 (2011).

    Article  ADS  Google Scholar 

  15. Ulamec, S. et al. Landing on small bodies: from the Rosetta lander to MASCOT and beyond. Acta Astronaut. 93, 460–466 (2014).

    Article  ADS  Google Scholar 

  16. Hessel, V. et al. Continuous-flow extraction of adjacent metals—a disruptive economic window for in situ resource utilization of asteroids? Angew. Chem. Int. Ed. 60, 3368–3388 (2021).

    Article  Google Scholar 

  17. Zacny, K. et al. in Asteriods (ed. Viorel, B.) 287–343 (Springer, 2013).

  18. Jones, T. et al. Amor: a lander mission to explore the C-type triple near-Earth asteroid system 2001 SN263. In 42nd Lunar and Planetary Science Conference 2695 (LPSC, 2011).

  19. Li, M. et al. Investigation on the ultimate uplift capacity for asteroid exploration in drilling anchoring process: numerical modelling and DEM simulation. Adv. Space Res. 68, 3026–3036 (2021).

    Article  ADS  Google Scholar 

  20. Bai, D., Quan, Q., Wang, Y., Tang, D. & Deng, Z. A longitudinal & longitudinal-torsional vibration actuator for rotary-percussive ultrasonic planetary drills. Adv. Space Res. 63, 1065–1072 (2019).

    Article  ADS  Google Scholar 

  21. Parness, A. et al. Maturing microspine grippers for space applications through test campaigns. In AIAA SPACE and Astronautics Forum and Exposition 2017-5311 (AIAA, 2017).

  22. Iacoponi, S., Calisti, M. & Laschi, C. Simulation and analysis of microspines interlocking behavior on rocky surfaces: an in-depth study of the isolated spine. ASME J. Mech. Rob. 12, 061016 (2020).

    Article  Google Scholar 

  23. Mikol, C. E. Compliant Gripping Mechanism for Anchoring and Mobility in Microgravity and Extreme Terrain. BSc thesis, Ohio State Univ. (2017).

  24. Parness, A. et al. Gravity independent rock climbing robot and a sample acquisition tool with microspine grippers. J. Field Rob. 30, 897–915 (2013).

    Article  Google Scholar 

  25. Zhang, J., Dong, C., Zhang, H., Li, S. & Song, A. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration. Adv. Space Res. 61, 2426–2443 (2018).

    Article  ADS  Google Scholar 

  26. Ulamec, S. et al. Rosetta lander—landing and operations on comet 67P/Churyumov–Gerasimenko. Acta Astronaut. 125, 80–91 (2016).

    Article  ADS  Google Scholar 

  27. Bibring, J. P. et al. The Rosetta lander ("Philae”) investigations. Space Sci. Rev. 128, 205–220 (2007).

    Article  ADS  Google Scholar 

  28. Thiel, M. et al. The ROSETTA lander anchoring system. In 10th European Space Mechanisms and Tribology Symposium 239–246b (2003).

  29. Chen, S. et al. Design and research on asteroid anchor system based on DEM simulation. In IEEE International Conference on Mechatronics and Automation 2259–2264 (IEEE, 2016).

  30. Zhao, Z. et al. Development of an anchoring system for the soft asteroid landing exploration. Int. J. Aerosp. Eng. 2019, 1257038 (2019).

    Article  Google Scholar 

  31. Zhao, Z., Zhao, J. & Liu, H. Landing dynamic and key parameter estimations of a landing mechanism to asteroid with soft surface. Int. J. Aeronaut. Space Sci. 14, 237–246 (2013).

    Article  Google Scholar 

  32. Zhang, Y., Feng, R., Yu, Y., Liu, J. & Baoyin, H. Asteroid capture dynamics and control using a large-scale flexible net. IEEE Trans. Aerosp. Electron. Syst. 58, 4033–4043 (2022).

    Article  ADS  Google Scholar 

  33. Parker, A. H. et al. Magnetic grapples for low-g anchoring and multi-point asteroid sample return. In 50th Lunar and Planetary Science Conference 3111 (LPSC, 2019).

  34. Steltzner, A. D. & Nasif, A. K. Anchoring technology for in situ exploration of small bodies. In IEEE Aerospace Conference 507–517 (IEEE, 2002).

  35. Lange, C. et al. Baseline design of a mobile asteroid surface scout (MASCOT) for the Hayabusa-2 mission. In 7th International Planetary Probe Workshop (COSPAR, 2010).

  36. Dymock, R. in Asteroids and Dwarf Planets and How to Observe Them (ed. Dymock, R.) 33–47 (Springer, 2010).

  37. Scoville, Z. C., Sipila, S. & Bowie, J. Extravehicular activity asteroid exploration and sample collection capability. In SpaceOps 2014 Conference 2014–1605 (AIAA, 2014).

  38. Polishook, D. et al. A 2 km-size asteroid challenging the rubble-pile spin barrier—A case for cohesion. Icarus 267, 243–254 (2016).

    Article  ADS  Google Scholar 

  39. Maurel, C., Ballouz, R. L., Richardson, D. C., Michel, P. & Schwartz, S. R. Numerical simulations of oscillation-driven regolith motion: Brazil-nut effect. Mon. Not. R. Astron. Soc. 464, 2866–2881 (2017).

    Article  ADS  Google Scholar 

  40. Mardon, A. A. & Zhou, G. Asteroid mining and in-situ resource utilization. In 82nd Annual Meeting of the Meteoritical-Society 6189 (LPI, 2019).

  41. Joyce, E. R., Fagin, M., Shestople, P., Snyder, M. P. & Patane, S. Made in space archinaut: key enabler for asteroid belt colonization. In AIAA SPACE and Astronautics Forum and Exposition 2017–5364 (AIAA, 2017).

  42. Xie, R., Bennett, N. J. & Dempster, A. G. Target evaluation for near earth asteroid long-term mining missions. Acta Astronaut. 181, 249–270 (2021).

    Article  ADS  Google Scholar 

  43. Rumpf, C. M. et al. Deflection driven evolution of asteroid impact risk under large uncertainties. Acta Astronaut. 176, 276–286 (2020).

    Article  ADS  Google Scholar 

  44. Morrison, D. in Planetary Defense 113–121 (Springer, 2019).

  45. Anthony, N., Frostevarg, J., Suhonen, H., Wanhainen, C. & Granvik, M. Laser-induced spallation of minerals common on asteroids. Acta Astronaut. 182, 325–331 (2021).

    Article  ADS  Google Scholar 

  46. Brophy, J. R. & Muirhead, B. Near-Earth asteroid retrieval mission (ARM) study. In 33rd International Electric Propulsion Conference IEPC-2013-82 (IEPC, 2013).

  47. Bazzocchi, M. C. F. & Emami, M. R. Asteroid redirection mission evaluation using multiple landers. J. Astronaut. Sci. 65, 183–204 (2018).

    Article  ADS  Google Scholar 

  48. Mazanek, D. D., Merrill, R. G., Brophy, J. R. & Mueller, R. P. Asteroid Redirect Mission concept: a bold approach for utilizing space resources. Acta Astronaut. 117, 163–171 (2015).

    Article  ADS  Google Scholar 

  49. Rainey, E. S. G. et al. Impact modeling for the Double Asteroid Redirection Test (DART) mission. Int. J. Impact Eng. 142, 103528 (2020).

    Article  Google Scholar 

  50. Nadoushan, M. J., Ghobadi, M. & Shafaee, M. Designing reliable detumbling mission for asteroid mining. Acta Astronaut. 174, 270–280 (2020).

    Article  ADS  Google Scholar 

  51. Gumulya, Y., Zea, L. & Kaksonen, A. H. In situ resource utilisation: the potential for space biomining. Miner. Eng. 176, 107288 (2022).

    Article  Google Scholar 

  52. Probst, A., Peytaví, G. G., Eissfeller, B. & Förstner, R. Mission concept selection for an asteroid mining mission. Aircr. Eng. Aerosp. Technol. 88, 458–470 (2016).

    Article  Google Scholar 

  53. Andrews, D. G. et al. Defining a successful commercial asteroid mining program. Acta Astronaut. 108, 106–118 (2015).

    Article  ADS  Google Scholar 

  54. Mazanek, D. D. et al. Asteroid redirect robotic mission: robotic boulder capture option overview. In AIAA Space 2014 Conference and Exposition 2014–4432 (AIAA, 2014).

  55. Zacny, K. et al. Asteroid mining. In AIAA SPACE 2013 Conference and Exposition 2013–5304 (AIAA, 2013).

  56. Ross, S. D. Near-Earth Asteroid Mining (California Institute of Technology, 2001).

  57. Joyce, E. R. & Snyder, M. P. Technologies enabling colonization of Near-Earth asteroids. In AIAA SPACE 2014 Conference and Exposition 2014–4372 (AIAA, 2014).

  58. Colvin, T. J., Crane, K. & Lal, B. Assessing the economics of asteroid-derived water for propellant. Acta Astronaut. 176, 298–305 (2020).

    Article  ADS  Google Scholar 

  59. Zhang, T., Xu, K. & Ding, X. China’s ambitions and challenges for asteroid–comet exploration. Nat. Astron. 5, 730–731 (2021).

    Article  ADS  Google Scholar 

  60. Belton, M. J. S. et al. Galileo encounter with 951 Gaspra: first pictures of an asteroid. Science 257, 1647–1652 (1992).

    Article  ADS  Google Scholar 

  61. Belton, M. J. S. et al. Galileo’s encounter with 243 Ida: an overview of the imaging experiment. Icarus 120, 1–19 (1996).

    Article  ADS  Google Scholar 

  62. Richter, I., Koenders, C., Glassmeier, K. H., Tsurutani, B. T. & Goldstein, R. Deep Space 1 at comet 19P/Borrelly: magnetic field and plasma observations. Planet. Space Sci. 59, 691–698 (2011).

    Article  ADS  Google Scholar 

  63. Hampton, D. L. et al. An overview of the instrument suite for the Deep Impact mission. Space Sci. Rev. 117, 43–93 (2005).

    Article  ADS  Google Scholar 

  64. Dunham, D. W. et al. Implementation of the first asteroid landing. Icarus 159, 433–438 (2002).

    Article  ADS  Google Scholar 

  65. Oberst, J. et al. A model for rotation and shape of asteroid 9969 Braille from ground-based observations and images obtained during the Deep Space 1 flyby. Icarus 153, 16–23 (2001).

    Article  ADS  Google Scholar 

  66. Tosi, F. et al. The light curve of asteroid 2867 Šteins measured by VIRTIS-M during the Rosetta fly-by. Planet. Space Sci. 58, 1066–1076 (2010).

    Article  ADS  Google Scholar 

  67. Granahan, J. A compositional study of asteroid 243 Ida and Dactyl from Galileo NIMS and SSI observations. J. Geophys. Res. 107, 1066–1076 (2022).

    Google Scholar 

  68. Grard, R., Pedersen, A., Knott, K. & Trotignon, J.-G. et al. Wave and plasma measurements on the Vega-1 and Vega-2 spacecraft in the environment of comet Halley. Adv. Space Res. 5, 175–180 (1985).

    Article  ADS  Google Scholar 

  69. Brownlee, D. E. et al. Stardust: comet and interstellar dust sample return mission. J. Geophys. Res. Planets https://doi.org/10.1029/2003JE002087 (2003).

  70. Guo, Y. & Farquhar, R. W. Baseline design of new horizons mission to Pluto and the Kuiper belt. Acta Astronaut. 58, 550–559 (2006).

    Article  ADS  Google Scholar 

  71. Saiki, T. et al. The small carry-on impactor (SCI) and the Hayabusa2 impact experiment. Space Sci. Rev. 208, 165–186 (2017).

    Article  ADS  Google Scholar 

  72. Richardson, J. E., Melosh, H. J., Artemeiva, N. A. & Pierazzo, E. Impact cratering theory and modeling for the Deep Impact mission: from mission planning to data analysis. Space Sci. Rev. 117, 241–267 (2005).

    Article  ADS  Google Scholar 

  73. Klaasen, K. P. et al. Invited article: Deep Impact instrument calibration. Rev. Sci. Instrum. 79, 091301 (2008).

    Article  ADS  Google Scholar 

  74. Jaumann, R. et al. A mobile asteroid surface scout (MASCOT) for the Hayabusa2 mission to 1999 JU3: the scientific approach. In European Planetary Science Congress 2013 1500 (LPSC, 2013).

  75. Sawada, H. et al. Hayabusa2 sampler: collection of asteroidal surface material. Space Sci. Rev. 208, 81–106 (2017).

    Article  ADS  Google Scholar 

  76. Yada, T. et al. Hayabusa-returned sample curation in the planetary material sample curation facility of JAXA. Meteorit. Planet Sci. 49, 135–153 (2014).

    Article  ADS  Google Scholar 

  77. Clark, B. C. et al. Tagsam: a gas-driven system for collecting samples from solar system bodies. In IEEE Aerospace Conference (IEEE, 2016).

  78. Kubota, T., Sawai, S., Hashimoto, T. & Kawaguchi, J. Robotics and autonomous technology for asteroid sample return mission. In 12th International Conference on Advanced Robotics 31–38 (IEEE, 2005).

  79. Glassmeier, K. H., Boehnhardt, H., Koschny, D., Kührt, E. & Richter, I. The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128, 1–21 (2007).

    Article  ADS  Google Scholar 

  80. Calle, C. I. et al. Electrodynamic dust shields on the International Space Station: exposure to the space environment. J. Electrostat. 71, 257–259 (2013).

    Article  Google Scholar 

  81. Scheeres, D. et al. The actual dynamical environment about Itokawa. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit 2006-6661 (AIAA, 2006).

  82. Dunn, T. L., Burbine, T. H., Bottke, W. F. Jr & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013).

    Article  ADS  Google Scholar 

  83. Sunshine, J. M., Bus, S. J., Corrigan, C. M., McCoy, T. J. & Burbine, T. H. Olivine dominated asteroids and meteorites: distinguishing nebular and igneous histories. Meteorit. Planet. Sci. 42, 155–170 (2007).

    Article  ADS  Google Scholar 

  84. Alan Stern, S. The evolution of comets in the Oort cloud and Kuiper belt. Nature 424, 639–642 (2003).

    Article  ADS  Google Scholar 

  85. Tholen, D. J. Asteroid Taxonomy from Cluster Analysis of Photometry. PhD thesis, Univ. Arizona (1984).

  86. Beck, P. et al. "Water” abundance at the surface of C-complex main-belt asteroids. Icarus 357, 114125 (2021).

    Article  Google Scholar 

  87. Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. & Yeomans, D. K. Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002).

    Article  ADS  Google Scholar 

  88. Weissman, P. R. & Lowry, S. C. Structure and density of cometary nuclei. Meteorit. Planet. Sci. 43, 1033–1047 (2008).

    Article  ADS  Google Scholar 

  89. Tonge, A. L., Ramesh, K. T. & Barnouin, O. A model for impact-induced lineament formation and porosity growth on Eros. Icarus 266, 76–87 (2016).

    Article  ADS  Google Scholar 

  90. Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top-shaped rubble pile. Science 364, 268–272 (2019).

    Article  ADS  Google Scholar 

  91. Schultz, P. H. et al. The Deep Impact oblique impact cratering experiment. Icarus 191, 84–122 (2007).

    Article  Google Scholar 

  92. Popova, O. et al. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).

    Article  ADS  Google Scholar 

  93. Carey, E. M. et al. Development and characteristics of mechanical porous ambient comet simulants as comet surface analogs. Planet. Space Sci. 147, 6–13 (2017).

    Article  ADS  Google Scholar 

  94. Herique, A. et al. Direct observations of asteroid interior and regolith structure: science measurement requirements. Adv. Space Res. 62, 2141–2162 (2018).

    Article  ADS  Google Scholar 

  95. Richardson, J. E., Steckloff, J. K. & Minton, D. A. Impact-produced seismic shaking and regolith growth on asteroids 433 Eros, 2867 Šteins, and 25143 Itokawa. Icarus 347, 113811 (2020).

    Article  Google Scholar 

  96. Veverka, J. et al. Near at Eros: imaging and spectral results. Science 289, 2088–2097 (2000).

    Article  ADS  Google Scholar 

  97. Sugita, S. et al. The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes. Science 364, aaw0422 (2019).

    Article  Google Scholar 

  98. Love, S. G. & Reagan, M. L. Delayed voice communication. Acta Astronaut. 91, 89–95 (2013).

    Article  ADS  Google Scholar 

  99. Mizuno, T. et al. Development of the laser altimeter (LIDAR) for Hayabusa2. Space Sci. Rev. 208, 33–47 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (grant numbers 51975139, 52105012 and 51935005) and Support by Self-Planned Task of State Key Laboratory of Robotics and System (grant number SKLRS202101C).

Author information

Authors and Affiliations

Authors

Contributions

Q.Q. and T.W. designed the framework of the Perspective. T.W., Q.Q., D.T. and Z.D. conducted the literature review. Q.Q. and T.W. wrote the manuscript.

Corresponding author

Correspondence to Qiquan Quan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Stephan Ulamec, Kris Zacny and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Quan, Q., Tang, D. et al. Progress in the development of small-celestial-body anchoring robots. Nat Astron 7, 380–390 (2023). https://doi.org/10.1038/s41550-023-01926-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01926-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing