Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

γ Columbae as a recently stripped pulsating core of a massive star

Abstract

Stellar cores, that is, the central regions where densities and temperatures are high enough for nuclear fusion processes to take place, are usually covered by an opaque envelope. Only in very rare cases, stars may expose their cores, for example, when a tiny fraction of them evolve into Wolf–Rayet or helium hot subdwarf stars. However, for the vast majority of stars, namely unevolved stars that burn hydrogen into helium in their centres, direct observational clues on the cores are still missing. On the basis of a spectroscopic and photometric analyses, here we show that the bright B-type-star γ Columbae is the stripped pulsating core (with a mass of 4–5 M, where M is the mass of the Sun) of a previously much more massive star of roughly 12 M that just finished central hydrogen fusion. The discovery of this star, which is still in a short-lived post-stripping structural re-adjustment phase, paves the way to obtain invaluable insights into the physics of both single and binary stars with respect to nuclear astrophysics and common-envelope evolution. In particular, it provides observational constraints on the structure and evolution of stripped-envelope stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observational signature of the peculiar abundances of carbon and nitrogen.
Fig. 2: Comparison with CNO signatures from other stars.
Fig. 3: Comparison between observed abundances and theoretical predictions for the depth-dependent chemical composition in a massive star.
Fig. 4: Stellar evolution in the Hertzsprung–Russell diagram.

Similar content being viewed by others

Data availability

The astrometric, photometric and spectroscopic data used in this work are all publicly available via the cited sources.

Code availability

All codes/routines used in this work are publicly documented, but not publicly available.

References

  1. Telting, J. H. et al. A high-resolution spectroscopy survey of β Cephei pulsations in bright stars. Astron. Astrophys. 452, 945–953 (2006).

    Article  ADS  Google Scholar 

  2. Hubrig, S. et al. New magnetic field measurements of β Cephei stars and slowly pulsating B stars. Astron. Nachr. 330, 317–329 (2009).

    Article  ADS  Google Scholar 

  3. Bagnulo, S., Landstreet, J. D., Fossati, L. & Kochukhov, O. Magnetic field measurements and their uncertainties: the FORS1 legacy. Astron. Astrophys. 538, A129 (2012).

    Article  ADS  Google Scholar 

  4. von Weizsäcker, C. F. Über Elementumwandlungen im Innern der Sterne II. Phys. Z. 39, 633–646 (1938).

    MATH  Google Scholar 

  5. Bethe, H. A. Energy production in stars. Phys. Rev. 55, 434–456 (1939).

    Article  ADS  MATH  Google Scholar 

  6. Przybilla, N., Firnstein, M., Nieva, M. F., Meynet, G. & Maeder, A. Mixing of CNO-cycled matter in massive stars. Astron. Astrophys. 517, A38 (2010).

    Article  ADS  Google Scholar 

  7. Maeder, A. et al. Evolution of surface CNO abundances in massive stars. Astron. Astrophys. 565, A39 (2014).

    Article  Google Scholar 

  8. Martins, F. et al. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars. Astron. Astrophys. 575, A34 (2015).

    Article  Google Scholar 

  9. Song, H. F., Meynet, G., Maeder, A., Ekström, S. & Eggenberger, P. Massive star evolution in close binaries. Conditions for homogeneous chemical evolution. Astron. Astrophys. 585, A120 (2016).

    Article  ADS  Google Scholar 

  10. Walborn, N. R. On the existence of OB Stars with anomalous nitrogen and carbon spectra. Astrophys. J. 164, L67 (1971).

    Article  ADS  Google Scholar 

  11. Martins, F. et al. Surface abundances of ON stars. Astron. Astrophys. 578, A109 (2015).

    Article  Google Scholar 

  12. Herald, J. E., Hillier, D. J. & Schulte-Ladbeck, R. E. Tailored analyses of the WN 8 stars WR 40 and WR 16. Astron. J. 548, 932–952 (2001).

    Article  Google Scholar 

  13. Heber, U. Hot subluminous stars. Publ. Astron. Soc. Pac. 128, 082001 (2016).

    Article  ADS  Google Scholar 

  14. Götberg, Y., de Mink, S. E. & Groh, J. H. Ionizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity. Astron. Astrophys. 608, A11 (2017).

    Article  Google Scholar 

  15. Götberg, Y. et al. Spectral models for binary products: unifying subdwarfs and Wolf–Rayet stars as a sequence of stripped-envelope stars. Astron. Astrophys. 615, A78 (2018).

    Article  Google Scholar 

  16. Ivanova, N. Common envelope: on the mass and the fate of the remnant. Astron. J. 730, 76 (2011).

    Article  Google Scholar 

  17. Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444 (2012).

    Article  ADS  Google Scholar 

  18. Crowther, P. A. Physical properties of Wolf–Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).

    Article  ADS  Google Scholar 

  19. Groh, J. H., Oliveira, A. S. & Steiner, J. E. The qWR star HD 45166. II. Fundamental stellar parameters and evidence of a latitude-dependent wind. Astron. Astrophys. 485, 245–256 (2008).

    Article  ADS  Google Scholar 

  20. Liu, J. et al. A wide star-black-hole binary system from radial-velocity measurements. Nature 575, 618–621 (2019).

    Article  ADS  Google Scholar 

  21. Rivinius, T., Baade, D., Hadrava, P., Heida, M. & Klement, R. A naked-eye triple system with a nonaccreting black hole in the inner binary. Astron. Astrophys. 637, L3 (2020).

    Article  ADS  Google Scholar 

  22. Lennon, D. J. et al. Gaia DR2 reveals a very massive runaway star ejected from R136. Astron. Astrophys. 619, A78 (2018).

    Article  Google Scholar 

  23. El-Badry, K. & Quataert, E. A stripped-companion origin for Be stars: clues from the putative black holes HR 6819 and LB-1. Mon. Not. R. Astron. Soc. 502, 3436–3455 (2021).

    Article  ADS  Google Scholar 

  24. Dessart, L., Hillier, D. J., Li, C. & Woosley, S. On the nature of supernovae Ib and Ic. Mon. Not. R. Astron. Soc. 424, 2139–2159 (2012).

    Article  ADS  Google Scholar 

  25. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  26. Kimeswenger, S. et al. YY Hya and its interstellar environment. Astron. Astrophys. 656, A145 (2021).

    Article  Google Scholar 

  27. Fedurco, M., Paunzen, E., Hümmerich, S., Bernhard, K. & Parimucha, Š. Pulsational properties of ten new slowly pulsating B stars. Astron. Astrophys. 633, A122 (2020).

    Article  ADS  Google Scholar 

  28. Pedersen, M. G. et al. Internal mixing of rotating stars inferred from dipole gravity modes. Nat. Astron. 5, 715–722 (2021).

    Article  ADS  Google Scholar 

  29. Southworth, J. & Bowman, D. M. High-mass pulsators in eclipsing binaries observed using TESS. Mon. Not. R. Astron. Soc. 513, 3191–3209 (2022).

    Article  ADS  Google Scholar 

  30. Woosley, S. E. The evolution of massive helium stars, including mass loss. Astron. J. 878, 49 (2019).

    Article  Google Scholar 

  31. Morel, M. & Magnenat, P. UBVRIJKLMNH photoelectric photometric catalogue. (Magnetic tape). Astron. Astrophys. Suppl. Ser. 34, 477 (1978).

    ADS  Google Scholar 

  32. Rufener, F. VizieR Online Data Catalog: Observations in the Geneva Photometric System 4. VizieR Online Data CatalogII/169/ https://ui.adsabs.harvard.edu/abs/1999yCat.2169....0R/abstract (1999).

  33. Høg, E. et al. The Tycho-2 catalogue of the 2.5 million brightest stars. Astron. Astrophys. 355, L27–L30 (2000).

    ADS  Google Scholar 

  34. Mermilliod, J. C. VizieR Online Data Catalog: Homogeneous Means in the UBV System. VizieR Online Data CatalogII/168 https://ui.adsabs.harvard.edu/abs/2006yCat.2168....0M/abstract (2006).

  35. van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    Article  ADS  Google Scholar 

  36. Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release. VizieR Online Data CatalogII/328 https://ui.adsabs.harvard.edu/abs/2014yCat.2328....0C/abstract (2014).

  37. Paunzen, E. A new catalogue of Strömgren–Crawford uvbyβ photometry. Astron. Astrophys. 580, A23 (2015).

    Article  ADS  Google Scholar 

  38. Riello, M. et al. Gaia Early Data Release 3. Photometric content and validation. Astron. Astrophys. 649, A3 (2021).

    Article  Google Scholar 

  39. Kurucz, R. L. in Model Atmospheres and Spectrum Synthesis (eds Adelman, S. J. et al.) 160–164 (ASP, 1996).

  40. Irrgang, A., Kreuzer, S., Heber, U. & Brown, W. A quantitative spectral analysis of 14 hypervelocity stars from the MMT survey. Astron. Astrophys. 615, L5 (2018).

    Article  ADS  Google Scholar 

  41. Fitzpatrick, E. L., Massa, D., Gordon, K. D., Bohlin, R. & Clayton, G. C. An analysis of the shapes of interstellar extinction curves. VII. Milky Way spectrophotometric optical-through-ultraviolet extinction and its R-dependence. Astron. J. 886, 108 (2019).

    Article  Google Scholar 

  42. Waelkens, C. Slowly pulsating B stars. Astron. Astrophys. 246, 453–468 (1991).

    ADS  Google Scholar 

  43. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  44. Houck, J. C. & Denicola, L. A. ISIS: an interactive spectral interpretation system for high resolution X-ray spectroscopy. In Astronomical Data Analysis Software and Systems IX, ASP Conference Proc. Vol. 216 (eds Manset, N. et al.) 591–594 (ASP, 2000).

  45. Moravveji, E. The impact of enhanced iron opacity on massive star pulsations: updated instability strips. Mon. Not. R. Astron. Soc. 455, L67–L71 (2016).

    ADS  Google Scholar 

  46. Dziembowski, W. A., Moskalik, P. & Pamyatnykh, A. A. The opacity mechanism in B-type stars—II. excitation of high-order g-modes in main-sequence stars. Mon. Not. R. Astron. Soc. 265, 588–600 (1993).

    Article  ADS  Google Scholar 

  47. The Hipparcos and Tycho Catalogues ESA SP, 1200 (ESA, 1997).

  48. De Cat, P. Observational asteroseismology of slowly pulsating B stars. Commun. Asteroseismol. 150, 167 (2007).

    Article  ADS  Google Scholar 

  49. Schrijvers, C., Telting, J. H., Aerts, C., Ruymaekers, E. & Henrichs, H. F. Line-profile variations due to adiabatic non-radial pulsations in rotating stars. I. Observable characteristics of spheroidal modes. Astron. Astrophys. Suppl. Ser. 121, 343–368 (1997).

    Article  ADS  Google Scholar 

  50. Briquet, M., De Cat, P., Aerts, C. & Scuflaire, R. The B-type variable HD 131120 modelled by rotational modulation. Astron. Astrophys. 380, 177–185 (2001).

    Article  ADS  Google Scholar 

  51. Briquet, M. et al. He and Si surface inhomogeneities of four Bp variable stars. Astron. Astrophys. 413, 273–283 (2004).

    Article  ADS  Google Scholar 

  52. Irrgang, A. et al. A new method for an objective, χ2-based spectroscopic analysis of early-type stars. First results from its application to single and binary B- and late O-type stars. Astron. Astrophys. 565, A63 (2014).

    Article  Google Scholar 

  53. Giddings, J. R. An Investigation of the Optical and Ultraviolet Spectra of Hot Subdwarf Stars. PhD thesis, Univ. London (1981).

  54. Butler, K. & Giddings, J. R. in Newsletter of Analysis of Astronomical Spectra No. 9 (Univ. London, 1985).

  55. Hubeny, I., Hummer, D. G. & Lanz, T. NLTE model stellar atmospheres with line blanketing near the series limits. Astron. Astrophys. 282, 151–167 (1994).

    ADS  Google Scholar 

  56. Tremblay, P. E. & Bergeron, P. Spectroscopic analysis of DA white dwarfs: Stark broadening of hydrogen lines including nonideal effects. Astron. J. 696, 1755–1770 (2009).

    Article  Google Scholar 

  57. Beauchamp, A., Wesemael, F. & Bergeron, P. Spectroscopic studies of DB white dwarfs: improved Stark profiles for optical transitions of neutral helium. Astrophys. J. Suppl. Ser. 108, 559–573 (1997).

    Article  ADS  Google Scholar 

  58. Nieva, M.-F. & Przybilla, N. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models. Astron. Astrophys. 539, A143 (2012).

    Article  Google Scholar 

  59. Georgy, C. et al. Populations of rotating stars. I. Models from 1.7 to 15 M at Z = 0.014, 0.006, and 0.002 with Ω/Ωcrit between 0 and 1. Astron. Astrophys. 553, A24 (2013).

    Article  Google Scholar 

  60. Lindegren, L. Re-normalising the Astrometric Chi-square in Gaia DR2 GAIA-C3-TN-LU-LL-124 (DPAC, 2018); www.rssd.esa.int/doc_fetch.php?id=3757412

  61. Nieva, M. F. & Simón-Díaz, S. The chemical composition of the Orion star forming region. III. C, N, Ne, Mg, and Fe abundances in B-type stars revisited. Astron. Astrophys. 532, A2 (2011).

    Article  Google Scholar 

  62. Fossati, L. et al. B fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars β CMa and  CMa. Possible lack of a ‘magnetic desert’ in massive stars. Astron. Astrophys. 574, A20 (2015).

    Article  Google Scholar 

  63. Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

G.M. thanks the Swiss National Science Foundation (project number 200020-205154). G.M. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 833925, project STAREX). We thank U. Heber and M. Sasaki for discussions and J. E. Davis for the development of the SLXFIG module that was used to prepare the figures in this paper. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 080.D-0333(A), 182.D-0356(C), 088.A-9003(A) and 090.D-0358(A). Based on observations obtained at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientique of France and the University of Hawaii. Funding for the TESS mission is provided by NASA’s Science Mission directorate. This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Some of the data presented in this paper were obtained from MAST. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper and to the writing of the manuscript. A.I. carried out the photometric, spectroscopic and astrometric analysis, the results of which were primarily interpreted by N.P. G.M. calculated the tailored stellar evolution model.

Corresponding author

Correspondence to Andreas Irrgang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irrgang, A., Przybilla, N. & Meynet, G. γ Columbae as a recently stripped pulsating core of a massive star. Nat Astron 6, 1414–1420 (2022). https://doi.org/10.1038/s41550-022-01809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01809-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing