Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of pristine circumstellar material from the Cassiopeia A supernova progenitor

Abstract

Cassiopeia A is a nearby young supernova remnant that provides a unique laboratory for the study of core-collapse supernova explosions1. Cassiopeia A is known to be a type IIb supernova from the optical spectrum of its light echo2, but the immediate progenitor of the supernova remains uncertain3. Here, we report results of near-infrared, high-resolution spectroscopic observations of Cassiopeia A, where we detected the pristine circumstellar material of the supernova progenitor. Our observations revealed a strong emission line of iron (Fe) from a circumstellar clump that has not yet been processed by the supernova shock wave. A comprehensive analysis of the observed spectra, together with a Hubble Space Telescope image, indicates that the majority of Fe in this unprocessed circumstellar material is in the gas phase, not depleted onto dust grains as in the general interstellar medium4. This result is consistent with a theoretical model5,6 of dust condensation in material that is heavily enriched with carbon–nitrogen–oxygen cycle nuclear reaction products, supporting the idea that the clump originated near the helium core of the progenitor7,8. It has recently been found that type IIb supernovae can result from the explosion of a blue supergiant with a thin hydrogen envelope9,10,11, and our results support such a scenario for Cassiopeia A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A deep [Fe ii] 1.644 μm image of Cas A.
Fig. 2: Average spectra of knot 24.
Fig. 3: Integrated intensity [Fe ii] 1.644 μm maps of the NLC and BLC of knot 24 compared with a HST image.
Fig. 4: Internal chemical structure of a non-rotating 20 \({M}_{\odot }\) single star in the RSG stage.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Milisavljevic, D. & Fesen, R. A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 2211–2231 (Springer, 2017).

  2. Krause, O. et al. The Cassiopeia A supernova was of type IIb. Science 320, 1195–1197 (2008).

    Article  ADS  Google Scholar 

  3. Chevalier, R. A. & Soderberg, A. M. Type IIb supernovae with compact and extended progenitors. Astrophys. J. Lett. 711, L40–L43 (2010).

    Article  ADS  Google Scholar 

  4. Savage, B. D. & Sembach, K. R. Interstellar abundances from absorption-line observations with the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 34, 279–330 (1996).

    Article  ADS  Google Scholar 

  5. Gail, H.-P., Duschl, W. J., Ferrarotti, A. S. & Weis, K. Dust formation in LBV envelopes. In The Fate of the Most Massive Stars (eds Humphreys, R. & Stanek, K.) 317–319 (ASP Conference Series Vol. 332, ASP, 2005).

  6. Gail, H.-P. in Astromineralogy 2nd edn (ed. Henning, T.) 61–141 (Lecture Notes in Physics Vol. 815, Springer, 2010).

  7. Chevalier, R. A. & Kirshner, R. P. Spectra of Cassiopeia A. II. Interpretation. Astrophys. J. 219, 931–941 (1978).

    Article  ADS  Google Scholar 

  8. Lamb, S. A. The Cassiopeia A progenitor: a consistent evolutionary picture involving supergiant mass loss. Astrophys. J. 220, 186–192 (1978).

    Article  ADS  Google Scholar 

  9. Meynet, G. et al. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants. Astron. Astrophys. 575, A60 (2015).

    Article  Google Scholar 

  10. Yoon, S.-C., Dessart, L. & Clocchiatti, A. Type Ib and IIb supernova progenitors in interacting binary systems. Astrophys. J. 840, 10 (2017).

    Article  ADS  Google Scholar 

  11. Kilpatrick, C. D. et al. On the progenitor of the type IIb supernova 2016gkg. Mon. Not. R. Astron. Soc. 465, 4650–4657 (2017).

    Article  ADS  Google Scholar 

  12. Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).

    Article  ADS  Google Scholar 

  13. Thorstensen, J. R., Fesen, R. A. & van den Bergh, S. The expansion center and dynamical age of the Galactic supernova remnant Cassiopeia A. Astron. J. 122, 297–307 (2001).

    Article  ADS  Google Scholar 

  14. Chevalier, R. A. & Oishi, J. Cassiopeia A and its clumpy presupernova wind. Astrophys. J. Lett. 593, L23–L26 (2003).

    Article  ADS  Google Scholar 

  15. van Veelen, B., Langer, N., Vink, J., García-Segura, G. & van Marle, A. J. The hydrodynamics of the supernova remnant Cassiopeia A. The influence of the progenitor evolution on the velocity structure and clumping. Astron. Astrophys. 503, 495–503 (2009).

    Article  ADS  Google Scholar 

  16. Hwang, U. & Laming, J. M. The circumstellar medium of Cassiopeia A inferred from the outer ejecta knot properties. Astrophys. J. 703, 883–893 (2009).

    Article  ADS  Google Scholar 

  17. Lee, J.-J., Park, S., Hughes, J. P. & Slane, P. O. X-ray observation of the shocked red supergiant wind of Cassiopeia A. Astrophys. J. 789, 7 (2014).

    Article  ADS  Google Scholar 

  18. Baade, W. & Minkowski, R. Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A. Astrophys. J. 119, 206–214 (1954).

    Article  ADS  Google Scholar 

  19. Kamper, K. & van den Bergh, S. Optical studies of Cassiopeia A. V. A definitive study of proper motions. Astrophys. J. Suppl. Ser. 32, 351–366 (1976).

    Article  ADS  Google Scholar 

  20. van den Bergh, S. & Kamper, K. Optical studies of Cassiopeia A. VII. recent observations of the structure and evolution of the nebulosity. Astrophys. J. 293, 537–541 (1985).

    Article  ADS  Google Scholar 

  21. Lawrence, S. S. et al. Three-dimensional Fabry–Perot imaging spectroscopy of the Crab Nebula, Cassiopeia A, and nova GK Persei. Astron. J. 109, 2635–2893 (1995).

    Article  ADS  Google Scholar 

  22. Alarie, A., Bilodeau, A. & Drissen, L. A hyperspectral view of Cassiopeia A. Mon. Not. R. Astron. Soc. 441, 2996–3008 (2014).

    Article  ADS  Google Scholar 

  23. Hurford, A. P. & Fesen, R. A. Reddening measurements and physical conditions for Cassiopeia A from optical and near-infrared spectra. Astrophys. J. 469, 246–254 (1996).

    Article  ADS  Google Scholar 

  24. Gerardy, C. L. & Fesen, R. A. Near-infrared spectroscopy of the Cassiopeia A and Kepler supernova remnants. Astron. J. 121, 2781–2791 (2001).

    Article  ADS  Google Scholar 

  25. Lee, Y.-H., Koo, B.-C., Moon, D.-S., Burton, M. G. & Lee, J.-J. Near-infrared knots and dense Fe ejecta in the Cassiopeia A supernova remnant. Astrophys. J. 837, 118 (2017).

    Article  ADS  Google Scholar 

  26. McKee, C. F. & Cowie, L. L. The interaction between the blast wave of a supernova remnant and interstellar clouds. Astrophys. J. 195, 715–725 (1975).

    Article  ADS  Google Scholar 

  27. Chevalier, R. A. & Liang, E. P. The interaction of supernovae with circumstellar bubbles. Astrophys. J. 344, 332–340 (1989).

    Article  ADS  Google Scholar 

  28. Fesen, R. A., Becker, R. H. & Blair, W. P. Discovery of fast-moving nitrogen-rich ejecta in the supernova remnant Cassiopeia A. Astrophys. J. 313, 378–388 (1987).

    Article  ADS  Google Scholar 

  29. Koo, B.-C. et al. A deep near-infrared [Fe ii] + [Si i] emission line image of the supernova remnant Cassiopeia A. Astrophys. J. 866, 139 (2018).

    Article  ADS  Google Scholar 

  30. Koo, B.-C., Raymond, J. C. & Kim, H.-J. Infrared [Fe ii] emission lines from radiative atomic shocks. J. Kor. Astron. Soc. 49, 109–122 (2016).

    Article  ADS  Google Scholar 

  31. Walmsley, C. M., Natta, A., Oliva, E. & Testi, L. The structure of the Orion bar. Astron. Astrophys. 364, 301–317 (2000).

    ADS  Google Scholar 

  32. Morris, P. W. et al. η Carinae’s dusty Homunculus Nebula from near-infrared to submillimeter wavelengths: mass, composition, and evidence for fading opacity. Astrophys. J. 842, 79 (2017).

    Article  ADS  Google Scholar 

  33. Aldering, G., Humphreys, R. M. & Richmond, M. SN 1993J: the optical properties of its progenitor. Astron. J. 107, 662–672 (1994).

    Article  ADS  Google Scholar 

  34. Yuk, I.-S. et al. Preliminary design of IGRINS (Immersion GRating INfrared Spectrograph). In Ground-based and Airborne Instrumentation for Astronomy III (eds McLean, I. S. et al.) 77351M (SPIE, 2010).

  35. Park, C. et al. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer). In Ground-based and Airborne Instrumentation for Astronomy V (eds Ramsay, S. K. et al.) 91471D (SPIE, 2014).

  36. Mace, G. et al. IGRINS at the Discovery Channel Telescope and Gemini South. In Ground-based and Airborne Instrumentation for Astronomy VII (eds Evans, C. J. et al.) 107020Q (SPIE, 2018).

  37. Lee, J.-J., Gullikson, K. & Kaplan, K. F. IGRINS pipeline package (IGRINS/PLP) v.2.2.0 (2017); https://doi.org/10.5281/zenodo.845059

  38. Kaplan, K. F. et al. Excitation of molecular hydrogen in the Orion bar photodissociation region from a deep near-infrared IGRINS spectrum. Astrophys. J. 838, 152 (2017).

    Article  ADS  Google Scholar 

  39. Draine, B. T. Scattering by interstellar dust grains. I. Optical and ultraviolet. Astrophys. J. 598, 1017–1025 (2003).

    Article  ADS  Google Scholar 

  40. Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S. & Kewley, L. J. The MAPPINGS III library of fast radiative shock models. Astrophys. J. Suppl. Ser. 178, 20–55 (2008).

    Article  ADS  Google Scholar 

  41. Ramsbottom, C. A., Hudson, C. E., Norrington, P. H. & Scott, M. P. Electron-impact excitation of Fe ii. Collision strengths and effective collision strengths for low-lying fine-structure forbidden transitions. Astron. Astrophys. 475, 765–769 (2007).

    Article  ADS  Google Scholar 

  42. Deb, N. C. & Hibbert, A. Radiative transition rates for the forbidden lines in Fe ii. Astron. Astrophys. 536, A74 (2011).

    Article  ADS  Google Scholar 

  43. Nussbaumer, H. & Storey, P. J. Atomic data for Fe ii. Astron. Astrophys. 89, 308–313 (1980).

    ADS  Google Scholar 

  44. Nussbaumer, H. & Storey, P. J. Transition probabilities for Fe ii infrared lines. Astron. Astrophys. 193, 327–333 (1988).

    ADS  Google Scholar 

  45. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  46. Draine, B. T. Physics of the Interstellar and Intergalactic Medium (Princeton Univ. Press, 2011).

  47. Drout, M. R., Massey, P., Meynet, G., Tokarz, S. & Caldwell, N. Yellow supergiants in the Andromeda Galaxy (M31). Astrophys. J. 703, 441–460 (2009).

    Article  ADS  Google Scholar 

  48. Reed, J. E., Hester, J. J., Fabian, A. C. & Winkler, P. F. The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706–721 (1995).

    Article  ADS  Google Scholar 

  49. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Fesen for comments on the manuscript. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017R1A2A2A05001337). This work used the IGRINS, which was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI), with the financial support of the US National Science Foundation under grant AST-1229522, of the University of Texas at Austin and of the Korean GMT Project of KASI. These results made use of the DCT at Lowell Observatory. Lowell is a private, non-profit institution dedicated to astrophysical research and public appreciation of astronomy and operates the DCT in partnership with Boston University, the University of Maryland, the University of Toledo, Northern Arizona University and Yale University. This work is based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

Author information

Authors and Affiliations

Authors

Contributions

B.-C.K. led the project, analysis and discussion and wrote the manuscript. H.-J.K. performed the observation and data reduction and contributed to the data analysis and manuscript writing. H.O. performed the observation and contributed to the IGRINS data analysis. J.C.R. contributed to the shock emission analysis and scientific interpretation. S.-C.Y. contributed to the scientific interpretation and the manuscript writing. Y.-H.L. contributed to the HST data analysis. D.T.J. contributed to the project set-up. All authors commented on the manuscript.

Corresponding author

Correspondence to Bon-Chul Koo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Tables 1 and 2 and Figs. 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, BC., Kim, HJ., Oh, H. et al. Detection of pristine circumstellar material from the Cassiopeia A supernova progenitor. Nat Astron 4, 584–589 (2020). https://doi.org/10.1038/s41550-019-0996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0996-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing