Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unveiling the molecular Hallmarks of Peyronie’s disease: a comprehensive narrative review

Abstract

Peyronie’s disease, a fibroinflammatory disorder, detrimentally impacts the sexual well-being of men and their partners. The manifestation of fibrotic plaques within penile tissue, attributed to dysregulated fibrogenesis, is pathognomonic for this condition. The onset of fibrosis hinges on the perturbation of the equilibrium between matrix metalloproteinases (MMPs), crucial enzymes governing the extracellular matrix, and tissue inhibitors of MMPs (TIMPs). In the context of Peyronie’s disease, there is an elevation in TIMP levels coupled with a decline in MMP levels, culminating in fibrogenesis. Despite the scant molecular insights into fibrotic pathologies, particularly in the context of Peyronie’s disease, a comprehensive literature search spanning 1995 to 2023, utilizing PubMed Library, was conducted to elucidate these mechanisms. The findings underscore the involvement of growth factors such as FGF and PDGF, and cytokines like IL-1 and IL-6, alongside PAI-1, PTX-3, HIF, and IgG4 in the fibrotic cascade. Given the tissue-specific modulation of fibrosis, comprehending the molecular underpinnings of penile fibrosis becomes imperative for the innovation of novel and efficacious therapies targeting Peyronie’s disease. This review stands as a valuable resource for researchers and clinicians engaged in investigating the molecular basis of fibrotic diseases, offering guidance for advancements in understanding Peyronie’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TGFβ binds to its receptor, which consists of a heterotetrameric structure, and facilitates the phosphorylation of SMAD2 or SMAD3 present in the cytoplasm, leading to the formation of the heterotrimeric SMAD2/3-SMAD4 complex.
Fig. 2: The role of PDGF receptors and signaling pathway in Peyronie’s disease.

Similar content being viewed by others

References

  1. Chung E, Ralph D, Kagioglu A, et al. Evidence-based management guidelines on Peyronie’s disease. J Sex Med. 2016;13:905–23.

    Article  PubMed  Google Scholar 

  2. Patel DP, Christensen MB, Hotaling JM, Pastuszak AW. A review of inflammation and fibrosis: implications for the pathogenesis of Peyronie’s disease. World J Urol. 2020;38:253–61.

    Article  PubMed  Google Scholar 

  3. Bilgutay AN, Pastuszak AW. Peyronie’s disease: a review of etiology, diagnosis, and management. Curr Sex Health Rep. 2015;7:117–31.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kuehhas FE, Weibl P, Georgi T, Djakovic N, Herwig R. Peyronie’s disease: nonsurgical therapy options. Rev Urol. 2011;13:139–46.

    PubMed Central  PubMed  Google Scholar 

  5. Derynck R, Zhang YE. Smad-dependent and smad-independent pathways in TGF-β family signalling. Nature. 2003;425:577–84.

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol. 2014;10:700–11.

    Article  CAS  PubMed  Google Scholar 

  7. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, et al. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int. 2001;59:579–92. https://doi.org/10.1046/j.1523-1755.2001.059002579.x.

    Article  CAS  PubMed  Google Scholar 

  8. Weng CM, Li Q, Chen KJ, Xu CX, Deng MS, Li T, et al. Bleomycin induces epithelial-to-mesenchymal transition via bFGF/PI3K/ESRP1 signaling in pulmonary fibrosis. Biosci Rep. 2020;40:BSR20190756 https://doi.org/10.1042/BSR20190756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maccarinelli F, Bugatti M, Churruca Schuind A, Ganzerla S, Vermi W, Presta M, et al. Endogenous long Pentraxin 3 exerts a protective role in a murine model of pulmonary fibrosis. Front Immunol. 2021;12:617671 https://doi.org/10.3389/fimmu.2021.617671.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Roeb E. Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 2018;68:463–73.

    Article  PubMed  Google Scholar 

  11. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol. 2011;12:233 https://doi.org/10.1186/gb-2011-12-11-233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 2012;11:790–811.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schmierer B, Hill CS. TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82.

    Article  CAS  PubMed  Google Scholar 

  16. Li MO, Flavell RA. TGF-β: a master of all T cell trades. Cell. 2008;134:392–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. El-Sakka AI, Hassoba HM, Pillarisetty RJ, Dahiya R, Lue TF. Peyronie’s disease is associated with an increase in transforming growth factor-beta protein expression. J Urol. 1997;158:1391–4.

    Article  CAS  PubMed  Google Scholar 

  18. Haag SM, Hauck EW, Szardening-Kirchner C, Diemer T, Cha ES, Weidner W, et al. Alterations in the transforming growth factor (TGF)-beta pathway as a potential factor in the pathogenesis of Peyronie’s disease. Eur Urol. 2007;51:255–61. https://doi.org/10.1016/j.eururo.2006.05.002.

    Article  CAS  PubMed  Google Scholar 

  19. Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lan HY. Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol. 2002;13:1464–72. https://doi.org/10.1097/01.asn.0000014252.37680.e4.

    Article  CAS  PubMed  Google Scholar 

  20. Magee TR, Qian A, Rajfer J, Sander FC, Levine LA, Gonzalez-Cadavid NF. Gene expression profiles in the Peyronie’s disease plaque. Urology. 2002;59:451–7.

    Article  PubMed  Google Scholar 

  21. Hauck EW, Hauptmann A, Schmelz HU, Bein G, Weidner W, Hackstein H. Prospective analysis of single nucleotide polymorphisms of the transforming growth factor beta-1 gene in Peyronie’s disease. J Urol. 2003;169:369–72. https://doi.org/10.1016/S0022-5347(05)64129-8.

    Article  CAS  PubMed  Google Scholar 

  22. Jung KH, Ryu YL, Lee HS, Lee H, Son MK, Yan HH, et al. A novel PI3K inhibitor alleviates fibrotic responses in fibroblasts derived from Peyronie’s plaques. Int J Oncol. 2013;42:2001–8.

    Article  CAS  PubMed  Google Scholar 

  23. Song KM, Chung DY, Choi MJ, Ghatak K, Minh NN, Limanjaya A, et al. Vactosertib, a novel, orally bioavailable activin receptor-like kinase 5 inhibitor, promotes regression of fibrotic plaques in a rat model of Peyronie’s disease. World J Men’s Health. 2020;38:552–63. https://doi.org/10.5534/wjmh.190071.

    Article  Google Scholar 

  24. Carthy JM, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin CH, et al. Tamoxifen inhibits TGF-β-Mediated activation of myofibroblasts by blocking non-smad signaling through ERK1/2. J Cell. Physiol. 2015;230:3084–92. https://doi.org/10.1002/jcp.25049.

    Article  CAS  PubMed  Google Scholar 

  25. Teloken C, Rhoden EL, Grazziotin TM, Ros CT, Sogari PR, Souto CA. Tamoxifen versus placebo in the treatment of Peyronie’s disease. J Urol. 1999;162:2003–5. https://doi.org/10.1016/S0022-5347(05)68087-1.

    Article  CAS  PubMed  Google Scholar 

  26. Shindel AW, Lin G, Ning H, Banie L, Huang YC, Liu G, et al. Pentoxifylline attenuates transforming growth factor-β1-stimulated collagen deposition and elastogenesis in human tunica albuginea-derived fibroblasts part 1: impact on extracellular matrix. J Sex Med. 2010;7:2077–85. https://doi.org/10.1111/j.1743-6109.2010.01790.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Smith JF, Shindel AW, Huang YC, Clavijo RI, Flechner L, Breyer BN, et al. Pentoxifylline treatment and penile calcifications in men with Peyronie’s disease. Asian J Androl. 2011;13:322–5. https://doi.org/10.1038/aja.2010.117.

    Article  CAS  PubMed  Google Scholar 

  28. Rose-John S, Winthrop K, Calabrese L.The role of IL-6 in host defence against infections: immunobiology and clinical implications.Nat Rev Rheumatol. 2017;13:399–409.

    Article  CAS  PubMed  Google Scholar 

  29. Calabrese LH, Rose-John S.IL-6 biology: implications for clinical targeting in rheumatic disease.Nat Rev Rheumatol. 2014;10:720–7.

    Article  CAS  PubMed  Google Scholar 

  30. Moodley YP, Misso NL, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, et al. Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol. 2003;29:490–8.

    Article  CAS  PubMed  Google Scholar 

  31. Denton CP, Ong VH, Xu S, Chen-Harris H, Modrusan Z, Lafyatis R, et al. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Annal Rheum Dis. 2018;77:1362–71.

    Article  CAS  Google Scholar 

  32. Atar Arda, et al. Role of interleukin-6 and pentraxin 3 as an early marker in Peyronie’s disease. Kaohsiung J Med Sci. 2017;33:195–200.

    Article  PubMed  Google Scholar 

  33. Watanabe MS, Theodoro TR, Coelho NL, Mendes A, Leonel MLP, Mader AM, et al. Extracellular matrix alterations in the Peyronie’s disease. J Adv Res. 2017;8:455–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zimmermann RP, Feil G, Bock C, Hoeltl L, Stenzl A. Significant alterations of serum cytokine levels in patients with Peyronie’s disease. Int. braz J Urol. 2008;34:457–66.

    Article  PubMed  Google Scholar 

  35. Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther. 2010;28:e72–91. https://doi.org/10.1111/j.1755-5922.2010.00171.x.

    Article  CAS  PubMed  Google Scholar 

  36. Ha H, Oh EY, Lee HB. The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat Rev Nephrol. 2009;5:203–11. https://doi.org/10.1038/nrneph.2009.15.

    Article  CAS  PubMed  Google Scholar 

  37. Davila HH, et al. Fibrin as an inducer of fibrosis in the tunica albuginea of the rat: a new animal model of Peyronie’s disease.”. BJU Int. 2003;91:830–8.

    Article  CAS  PubMed  Google Scholar 

  38. Davila HugoH, et al. “Peyronie’s disease associated with increase in plasminogen activator inhibitor in fibrotic plaque.”. Urology. 2005;65:645–8.

    Article  PubMed  Google Scholar 

  39. Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair, and cancer. Physiol Rev. 2018;98:623–39. https://doi.org/10.1152/physrev.00016.2017.

    Article  CAS  PubMed  Google Scholar 

  40. Gorka-Dynysiewicz J, Pazgan-Simon M, Zuwala-Jagiello J. Pentraxin 3 detects clinically significant fibrosis in patients with chronic viral hepatitis C. BioMed Res Int. 2019;2019:2639248 https://doi.org/10.1155/2019/2639248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mamer SB, Chen S, Weddell JC, Palasz A, Wittenkeller A, Kumar M, et al. Discovery of high-affinity PDGF-VEGFR interactions: redefining RTK dynamics. Sci Rep. 2017;7:1–14.

    Article  CAS  Google Scholar 

  42. Zou X, Tang XY, Qu ZY, Sun ZW, Ji CF, Li YJ, et al. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: a review. Int J Biol Macromol. 2022;202:539–57.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Tieqiang, et al. “Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts.”. Am J Physiol-Heart Circ Physiol. 2013;304:H1719–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lucattelli M, Lunghi B, Fineschi S, Mirone V, di Villa Bianca RDE, Longo N, et al. A new mouse model of Peyronie’s disease: an increased expression of hypoxia-inducible factor-1 target genes during the development of penile changes. Int J Biochem Cell Biol. 2008;40:2638–48.

    Article  CAS  PubMed  Google Scholar 

  45. Gentile V, et al. “Ultrastructural and immunohistochemlcal Characterization of the Tunica Albuginea in Peyronie’s Disease and Veno‐occlusive Dysfunction.”. J Androl. 1996;17:96–103.

    Article  CAS  PubMed  Google Scholar 

  46. Aversa A, et al. “Platelet-derived growth factor (PDGF) and PDGF receptors in rat corpus cavernosum: changes in expression after transient in vivo hypoxia.”. J Endocrinol. 2001;170:395–402.

    Article  CAS  PubMed  Google Scholar 

  47. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

    Article  CAS  PubMed  Google Scholar 

  48. Gokce A, Abd Elmageed ZY, Lasker GF, Bouljihad M, Kim H, Trost LW, et al. Adipose tissue–derived stem cell therapy for prevention and treatment of erectile dysfunction in a rat model of Peyronie’s disease. Andrology. 2014;2:244–51.

    Article  CAS  PubMed  Google Scholar 

  49. Campbell J, DeYoung L, Chung E, Brock G. 022 matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the pathogenesis of Peyronie’s Disease. J Sex Med. 2016;13:S11.

    Article  Google Scholar 

  50. Castiglione F, Hedlund P, Weyne E, Hakim L, Montorsi F, Bivalacqua TJ, et al. Intratunical injection of human adipose tissue–derived stem cells restores collagen III/I ratio in a rat model of chronic Peyronie’s disease. Sex Med. 2019;7:94–103.

    Article  PubMed  Google Scholar 

  51. Del Carlo M, Cole AA, Levine LA. Differential calcium independent regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by interleukin-1β and transforming growth factor-β in Peyronie’s plaque fibroblasts. J Urol. 2008;179:2447–55.

    Article  PubMed  Google Scholar 

  52. Karavitakis Markos, et al. “The relationship between androgens, regulators of collagen metabolism, and Peyronie’s disease: a case control study.”. J Sex Med. 2010;7:4011–7.

    Article  CAS  PubMed  Google Scholar 

  53. Yang Q, Chen W, Han D, Zhang C, Xie Y, Sun X, et al. Intratunical injection of human urine‐derived stem cells derived exosomes prevents fibrosis and improves erectile function in a rat model of Peyronie’s disease. Andrologia. 2020;52:e13831.

    Article  CAS  PubMed  Google Scholar 

  54. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Roth KJ, Copple BL. Role of hypoxia-inducible factors in the development of liver fibrosis. Cell Mol Gastroenterol Hepatol. 2015;1:589–97.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Cui Y, Wang Y, Men C, Wu J, Liu L. Bioinformatics-Based identification of potential hypoxia-related genes associated with Peyronie’s Disease. Am J Men’s Health. 2022;16:15579883221111720.

    Article  Google Scholar 

  57. Hu J, Wang W, Zhang F, Li PL, Boini KM, Yi F, et al. Hypoxia inducible factor-1α mediates the profibrotic effect of albumin in renal tubular cells. Sci Rep. 2017;7:15878.

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  58. Solakhan M, Kısacık B. Is Peyronie’s an IgG4-related disease? Eur J Rheumatol. 2021;8:27.

    Article  PubMed  Google Scholar 

  59. Perugino CA, Stone JH. IgG4-related disease: an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol. 2020;16:702–14.

    Article  CAS  PubMed  Google Scholar 

  60. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62.

    Article  CAS  PubMed  Google Scholar 

  61. Shindel AW, Sweet G, Thieu W, Durbin-Johnson B, Rothschild J, Szabo R. Prevalence of Peyronie’s disease-Like symptoms in men presenting with Dupuytren contractures. Sex Med. 2017;5:e135–41.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Theiss AL, Simmons JG, Jobin C, Lund PK. Tumor necrosis factor (TNF) α increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem. 2005;280:36099–109.

    Article  CAS  PubMed  Google Scholar 

  63. Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, et al. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep. 2021;11:23587.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  64. Milenkovic U, Janky R, Hatzichristodoulou G, Van Renterghem K, Cellek S, Bivalacqua TJ, et al. Transcriptome-wide analysis of Peyronie’s disease plaques using RNA sequencing uncovers targetable signalling pathways for medical therapy. Eur Urol Suppl. 2019;18:e1245.

    Article  Google Scholar 

  65. Pavone C, Caruana G, Abbadessa D, Scaduto G, Gambino G, Serretta V, et al. Cytokine gene expression in the tunica albuginea of patients with Peyronie’s disease. Pilot study with a control group. Urol J. 2012;79:189–96.

    Article  Google Scholar 

  66. Milenkovic U, Ilg MM, van Renterghem K, De Ridder D, Albersen M. 277 Interplay between TNFa and TGF-B1 in a cell culture model of Peyronie’s Disease. J Sex Med. 2018;15:S234–S234.

    Article  Google Scholar 

  67. Nanchahal J, Ball C, Rombach I, Williams L, Kenealy N, Dakin H, et al. Anti-tumour necrosis factor therapy for early-stage Dupuytren’s disease (RIDD): a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Rheumatol. 2022;4:e407–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4:505–18.

    Article  CAS  PubMed  Google Scholar 

  69. Gelfand RA, Vernet D, Kovanecz I, Rajfer J, Gonzalez‐Cadavid NF. The transcriptional signatures of cells from the human Peyronie’s disease plaque and the ability of these cells to generate a plaque in a rat model suggest potential therapeutic targets. J Sex Med. 2015;12:313–27.

    Article  CAS  PubMed  Google Scholar 

  70. Hernandez DM, Kang JH, Choudhury M, et al. IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J. 2020;34:5363–88. https://doi.org/10.1096/fj.201901719RRqiyu.

    Article  CAS  PubMed  Google Scholar 

  71. Borthwick, LA. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. In Seminars in immunopathology. Springer Berlin Heidelberg; 2016. p. 517–34.

  72. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J.Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis.J Clin Investig. 2001;107:1529–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.

    Article  PubMed  Google Scholar 

  74. Gonzalez-Cadavid NF, Rajfer J. Treatment of Peyronie’s disease with PDE5 inhibitors: an antifibrotic strategy. Nat Rev Urol. 2010;7:215–21.

    Article  CAS  PubMed  Google Scholar 

  75. Toblli JE, Ferrini MG, Cao G, Vernet D, Angerosa M, Gonzalez-Cadavid NF. Antifibrotic effects of pioglitazone on the kidney in a rat model of type 2 diabetes mellitus. Nephrol Dialysis Transplant. 2009;24:2384–91.

    Article  CAS  Google Scholar 

  76. Khor YH, Adegunsoye A. Inhaled nitric oxide for fibrotic interstitial lung disease: a step forward. Annal Am Thoracic Soc. 2022;19:536–8. https://doi.org/10.1513/AnnalsATS.202110-1160ED.

    Article  Google Scholar 

  77. Bivalacqua TJ, Champion HC, Leungwattanakij S, Yang DY, Hyun JS, Abdel‐Mageed AB. et al. Evaluation of nitric oxide synthase and arginase in the induction of a Peyronie’s‐like condition in the rat. J Androl. 2001;22:497–506.

    Article  CAS  PubMed  Google Scholar 

  78. Ferrini MG, Rivera S, Moon J, Vernet D, Rajfer J, Gonzalez-Cadavid NF. The genetic inactivation of inducible nitric oxide synthase (iNOS) intensifies fibrosis and oxidative stress in the penile corpora cavernosa in type 1 diabetes. J Sex Med. 2010;7:3033–44. https://doi.org/10.1111/j.1743-6109.2010.01884.x.

    Article  CAS  PubMed  Google Scholar 

  79. Vernet D, Ferrini MG, Valente EG, Magee TR, Bou-Gharios G, Rajfer J, et al. Effect of nitric oxide on the differentiation of fibroblasts into myofibroblasts in the Peyronie’s fibrotic plaque and in its rat model. Nitric Oxide. 2002;7:262–76. https://doi.org/10.1016/s1089-8603(02)00124-6.

    Article  CAS  PubMed  Google Scholar 

  80. Davila HH, Magee TR, Vernet D, Rajfer J, Gonzalez-Cadavid NF. Gene transfer of inducible nitric oxide synthase complementary DNA regresses the fibrotic plaque in an animal model of Peyronie’s disease. Biol Reprod. 2004;71:1568–77.

    Article  CAS  PubMed  Google Scholar 

  81. Bivalacqua TJ, Champion HC, Mehta YS, et al. Adenoviral gene transfer of endothelial nitric oxide synthase (eNOS) to the penis improves age-related erectile dysfunction in the rat. Int J Impot Res. 2000;12:S8–17. https://doi.org/10.1038/sj.ijir.3900556.

    Article  PubMed  Google Scholar 

  82. Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Signal Transduct Targeted Ther. 2020;5:181.

    Article  CAS  Google Scholar 

  83. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev: Dev Biol. 2015;4:215–66.

    Article  CAS  PubMed  Google Scholar 

  84. Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol. 2013;14:166–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Dolivo DM, Larson SA, Dominko T. Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev. 2017;38:49–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Mulhall JP, Thom J, Lubrano T, Shankey TV.Basic fibroblast growth factor expression in Peyronie’s disease.J Urol. 2001;165:419–23.

    Article  CAS  PubMed  Google Scholar 

  87. Mulhall JP, Branch J, Lubrano T, Shankey TV.Radiation increases fibrogenic cytokine expression by Peyronie’s disease fibroblasts.J Urol. 2003;170:281–4.

    Article  CAS  PubMed  Google Scholar 

  88. Chung E, De Young L, Brock GB. Rat as an animal model for Peyronie’s disease research: a review of current methods and the peer-reviewed literature. Int J Impot Res. 2011;23:235–41.

    Article  CAS  PubMed  Google Scholar 

  89. Stancik I, Schäfer R, Andrukhova O, Oeser R, Plas E, Pflüger H. Effect of transdermal electromotive drug therapy on fibrogenic cytokine expression in Peyronie’s disease. Urology. 2009;74:566–70.

    Article  PubMed  Google Scholar 

  90. Burgy O, Königshoff M. The WNT signaling pathways in wound healing and fibrosis. Matrix Biol. 2018;68-69:67–80. https://doi.org/10.1016/j.matbio.2018.03.017.

    Article  CAS  PubMed  Google Scholar 

  91. Dolmans GH, Werker PM, de Jong IJ, Nijman RJ, LifeLines Cohort Study, Wijmenga C, Ophoff RA. WNT2 locus is involved in genetic susceptibility of Peyronie’s disease. J Sex Med. 2012;9:1430–4.

    Article  CAS  PubMed  Google Scholar 

  92. Ten Dam EJP, van Driel MF, de Jong IJ, Werker PM, Bank RA. Glimpses into the molecular pathogenesis of Peyronie’s disease. Aging Male. 2020;23:962–70.

    Article  PubMed  Google Scholar 

  93. De Young LX, Bella AJ, O’Gorman DB, Gan BS, Lim KB, Brock GB.Protein biomarker analysis of primary Peyronie’s disease cells.J Sex Med. 2010;7:99–106.

    Article  PubMed  Google Scholar 

  94. Liu T, Shindel AW, Lin G, Lue TF. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int J Impot Res. 2019;31:170–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Gundogdu G, Nguyen T, Namasivayam A, Starek S, Gelman J, Mauney, JR. Characterization of a novel rabbit model of Peyronie’s disease. Int J Impot Res. 2023. https://doi.org/10.1038/s41443-023-00671-y.

  96. Minor TX, Lin G, Jad A, Lin CS, Hayashi N, F. Lue T. 1058: the effect of pentoxifylline on cultured human tunical fibroblasts from patients with Peyronie’s Disease. J Urol. 2005;173:287–287.

    Article  Google Scholar 

  97. Campbell J, DeYoung L, Chung E, Brock G. Mp89-20 traction applied to peyronie’s disease cells reduces cellular fibrosis. J Urol. 2016;195:e1144.

    Article  Google Scholar 

  98. Geng Q, Wang F, Han Q, Chen SF, Ouyang B, Li Z, et al. Antioxidant mechanism of Xiaojin Pill (小金丸) for treatment of Peyronie’s disease in rats based on matrix metalloproteinases. Chin J Integr Med. 2019;25:671–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Murat Gül had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Gül, Şahin. Acquisition of data: Babayev, Şahin, Cirigliano, Altıntaş. Analysis and interpretation of data: Preto, Şahin, Babayev. Drafting of the manuscript: Şahin, Babayev, Gül. Critical revision of the manuscript for important intellectual content: Falcone, Gül. Statistical analysis: Şahin, Altıntaş, Babayev. Obtaining funding: None. Administrative, technical, or material support: None. Supervision: Gül, Falcone. Other: None.

Corresponding author

Correspondence to Murat Gül.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, A., Babayev, H., Cirigliano, L. et al. Unveiling the molecular Hallmarks of Peyronie’s disease: a comprehensive narrative review. Int J Impot Res (2024). https://doi.org/10.1038/s41443-024-00845-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41443-024-00845-2

Search

Quick links