Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antihypertensive activity of a new c-Jun N-terminal kinase inhibitor in spontaneously hypertensive rats

Abstract

c-Jun N-terminal kinases (JNKs) are involved in the myocardial and aortic remodeling, increased arterial tone, and arterial blood pressure elevation associated with hypertension. The aim of the present study was to investigate the antihypertensive effect of a new JNK inhibitor, 1H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), on spontaneously hypertensive rats (SHRs). Experiments were performed using normotensive Wistar-Kyoto (WKY) rats and SHRs. Experimental groups of SHRs received IQ-1S intragastrically for 6 weeks in daily doses of 5 and 50 mg/kg; experimental groups of WKY rats received 50 mg/kg IQ-1S according to the same regimen. The IQ-1S administration regimen induced decreases in systolic blood pressure, mean arterial blood pressure, total peripheral resistance, blood viscosity, hematocrit, myocardial cell cross-sectional area, and aortic wall thickness in SHRs vs untreated SHRs. There were no significant differences in systolic blood pressure values between the control and experimental groups of WKY rats during the treatment period. A concentration-dependent decrease in the tone of carotid arterial rings isolated from SHRs was observed after JNK inhibitor application in vitro. Application of the JNK inhibitor diminished endothelin-1 secretion by human umbilical vein endothelial cells in vitro. The main mechanisms of the antihypertensive effect of IQ-1S included the attenuation of blood viscosity due to decreased hematocrit, a vasodilatory effect on arterial smooth muscle cells, and a decrease in endothelin-1 production by endothelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hollander W. Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol. 1976;38:786–800.

    CAS  PubMed  Google Scholar 

  2. Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci Signal. 2014;7:re3.

    PubMed  Google Scholar 

  3. Cogolludo A, Pérez-Vizcaíno F, Tamargo J. New insights in the pharmacological therapy of arterial hypertension. Curr Opin Nephrol Hypertens. 2005;14:423–7.

    CAS  PubMed  Google Scholar 

  4. Tassi E, Lai EY, Li L, Solis G, Chen Y, Kietzman WE, et al. Blood pressure control by a secreted FGFBP1 (fibroblast growth factor-binding protein). Hypertension. 2018;71:160–7.

    CAS  PubMed  Google Scholar 

  5. Sadochima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–84.

    Google Scholar 

  6. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem. 1996;271:3221–8.

    CAS  PubMed  Google Scholar 

  7. Sugden PH, Clerk A. ‘Stress-responsive’ mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998;83:345–52.

    CAS  PubMed  Google Scholar 

  8. Yano M, Kim S, Izumi Y, Yamamaka S, Iwao H. Differential activation of cardiac c-jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ Res. 1998;83:752–60.

    CAS  PubMed  Google Scholar 

  9. Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T. Role of the stress-activated protein kinases in endothelininduced cardiomyocyte hypertrophy. J Clin Investig. 1998;102:1311–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Izumi Y, Kim S, Zhan Y, Namba M, Yasumoto H, Iwao H. Important role of angiotensin II-mediated c-Jun NH(2)-terminal kinase activation in cardiac hypertrophy in hypertensive rats. Hypertension. 2000;36:511–6.

    CAS  PubMed  Google Scholar 

  11. Vogel V, Bokemeyer D, Heller J, Kramer HJ. Cardiac hypertrophy in the Prague-hypertensive rat is associated with enhanced JNK2 but not ERK tissue activity. Kidney Blood Press Res. 2001;24:52–56.

    CAS  PubMed  Google Scholar 

  12. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292:C82–97.

    CAS  PubMed  Google Scholar 

  13. Liu X, Huang X, Chen L, Zhang Y, Li M, Wang L, et al. Mechanical stretch promotes matrix metalloproteinase-2 and prolyl-4-hydroxylase α1 production in human aortic smooth muscle cells via Akt-p38 MAPK-JNK signaling. Int J Biochem Cell Biol. 2015;62:15–23.

    CAS  PubMed  Google Scholar 

  14. Duguay D, deBlois D. Differential regulation of Akt, caspases and MAP kinases underlies smooth muscle cell apoptosis during aortic remodelling in SHR treated with amlodipine. Br J Pharm. 2007;151:1315–23.

    CAS  Google Scholar 

  15. Zhong JC, Ye JY, Jin HY, Yu X, Yu HM, Zhu DL, et al. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regul Pept. 2011;166:90–97.

    CAS  PubMed  Google Scholar 

  16. Reis RI, Nogueira MD, Campanha-Rodrigues AL, Pereira LM, Andrade MCC, Parreiras-E-Silva LT, et al. The binding of Captopril to Angiotensin-I converting enzyme triggers signaling pathways activation. Am J Physiol Cell Physiol. 2018;315:C367–C379.

    CAS  PubMed  Google Scholar 

  17. Li H, Liu X, Zhang L, Li X. LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget. 2017;8:114568–75.

    PubMed  PubMed Central  Google Scholar 

  18. Ok SH, Jeong YS, Kim JG, Lee SM, Sung HJ, Kim HJ, et al. c-Jun NH2-terminal kinase contributes to dexmedetomidine-induced contraction in isolated rat aortic smooth muscle. Yonsei Med J. 2011;52:420–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Knight RJ, Buxton DB. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun. 1996;218:83–88.

    CAS  PubMed  Google Scholar 

  20. Armstrong SC. Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004;61:427–36.

    CAS  PubMed  Google Scholar 

  21. Bode AM, Dong Z. The functional contrariety of JNK. Mol Carcinog. 2007;46:591–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 2006;70:1061–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996;15:2760–70. PubMed PMCID: PMC450211

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Waetzig V, Herdegen T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage. Trends Pharm Sci. 2005;26:455–61.

    CAS  PubMed  Google Scholar 

  25. Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta. 2007;1773:1341–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front Pharm. 2018;9:715. eCollection 2018

    Google Scholar 

  27. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Hanks TS, Kochetkova I, Pascual DW, et al. Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol Pharm. 2012;81:832–45.

    CAS  Google Scholar 

  28. Schepetkin IA, Kirpotina LN, Hammaker D, Kochetkova I, Khlebnikov AI, Lyakhov SA, et al. Anti-inflammatory effects and joint protection in collagen-induced arthritis after treatment with IQ-1S, a selective c-Jun N-terminal kinase inhibitor. J Pharm Exp Ther. 2015;353:505–16.

    CAS  Google Scholar 

  29. Pearson BD. Indenoquinolines. III. Derivatives of 11H-Indeno-[1,2-b]quinoxaline and related indenoquinolines. J Org Chem. 1962;27:1674–8.

    CAS  Google Scholar 

  30. Guide for the Care and Use of Laboratory Animals. National Research Council (US). Committee for the update of the guide for the care and use of laboratory animals. 8th ed. Washington (DC), USA: National Academies Press; 2011.

  31. Lu Q, Qiu TQ, Yang H. Ligustilide inhibits vascular smooth muscle cells proliferation. Eur J Pharm. 2006;542:136–40.

    CAS  Google Scholar 

  32. Dornas WC, Silva ME. Animal models for the study of arterial hypertension. J Biosci. 2011;36:731–7.

    PubMed  Google Scholar 

  33. Zicha J, Kunes J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–82.

    CAS  PubMed  Google Scholar 

  34. Gómez-Roso M, Montero MJ, Carrón R, Sevilla MA. Cardiovascular changes in spontaneously hypertensive rats are improved by chronic treatment with zofenopril. Br J Pharmacol. 2009;158:1911–21.

    PubMed  PubMed Central  Google Scholar 

  35. Saxena T, Ali AO, Saxena M. Pathophysiology of essential hypertension: an update. Exp Rev Cardiovasc Ther. 2018;16:879–87.

    CAS  Google Scholar 

  36. Foëx P. Hypertension: pathophysiology and treatment. Cont Educ Anaesth Crit Care Pain. 2004;4:71–75.

    Google Scholar 

  37. Kannel WB. Incidence and epidemiology of heart failure. Heart Fail Rev. 2000;5:167–73.

    CAS  PubMed  Google Scholar 

  38. Damatto RL, Lima AR, Martinez PF, Cezar MD, Okoshi K, Okoshi MP. Myocardial myostatin in spontaneously hypertensive rats with heart failure. Int J Cardiol. 2016;215:384–7.

    CAS  PubMed  Google Scholar 

  39. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem. 1998;273:5423–6.

    CAS  PubMed  Google Scholar 

  40. Wu Y, Qian Z, Fu S, Yue Y, Li Y, Sun R, et al. Icariside II improves left ventricular remodeling in spontaneously hypertensive rats by inhibiting the ASK1-JNK/p38 signaling pathway. Eur J Pharm. 2018;819:68–79.

    CAS  Google Scholar 

  41. Yao HL, Gao FH, Li ZZ, Wu HX, Xu MD, Zhang Z, et al. Monocyte chemoattractant protein-1 mediates angiotensin II-induced vascular smooth muscle cell proliferation via SAPK/JNK and ERK1/2. Mol Cell Biochem. 2012;366:355–62.

    CAS  PubMed  Google Scholar 

  42. Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens. 2004;22:1141–9.

    CAS  PubMed  Google Scholar 

  43. Kim S, Iwao H. Stress and vascular responses: mitogen-activated protein kinases and activator protein-1 as promising therapeutic targets of vascular remodeling. J Pharm Sci. 2003;91:177–81.

    CAS  Google Scholar 

  44. Kim S, Murakami T, Izumi Y, Yano M, Miura K, Yamanaka S, et al. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activities are continuously and differentially increased in aorta of hypertensive rats. Biochem Biophys Res Commun. 1997;236:199–204.

    CAS  PubMed  Google Scholar 

  45. Zheng Y, Song HJ, Kim CH, Kim HS, Kim EG, Sachinidis A, et al. Inhibitory effect of epigallocatechin 3-O-gallate on vascular smooth muscle cell hypertrophy induced by angiotensin II. J Cardiovasc Pharm. 2004;43:200–8.

    CAS  Google Scholar 

  46. Nagayama K, Kyotani Y, Zhao J, Ito S, Ozawa K, Bolstad FA, et al. Exendin-4 prevents vascular smooth muscle cell proliferation and migration by angiotensin II via the inhibition of ERK1/2 and JNK signaling pathways. PLoS One. 2015;10:e0137960.

    PubMed  PubMed Central  Google Scholar 

  47. Baskurt OK, Yalcin O, Meiselman HJ. Hemorheology and vascular control mechanisms. Clin Hemorheol Microcirc. 2004;30:169–78. PubMed PMID: 15258340

    PubMed  Google Scholar 

  48. Chien S. Blood rheology in myocardial infarction and hypertension. Biorheology. 1986;23:633–53. PubMed PMID: 3307943

    CAS  PubMed  Google Scholar 

  49. Sloop G, Holsworth RE, Weidman JJ, St Cyr JA. The role of chronic hyperviscosity in vascular disease. Ther Adv Cardiovasc Dis. 2015;9:19–25.

    PubMed  Google Scholar 

  50. Lee YR, Lee CK, Park HJ, Kim H, Kim J, Kim J, et al. c-Jun N-terminal kinase contributes to norepinephrine-induced contraction through phosphorylation of caldesmon in rat aortic smooth muscle. J Pharm Sci. 2006;100:119–25.

    CAS  Google Scholar 

  51. Plotnikov MB, Chernysheva GA, Aliev OI, Smol’iakova VI, Fomina TI, Osipenko AN, et al. Protective effects of a new c-Jun N-terminal kinase inhibitor in the model of global cerebral ischemia in rats. Molecules. 2019;24:E1722.

    PubMed  Google Scholar 

  52. Shreenivas S, Oparil S. The role of endothelin-1 in human hypertension. Clin Hemorheol Microcirc. 2007;37:157–78. PubMed PMID: 17641406

    CAS  PubMed  Google Scholar 

  53. Sudano I, Roas S, Noll G. Vascular abnormalities in essential hypertension. Curr Pharm Des. 2011;17:3039–44.

    CAS  PubMed  Google Scholar 

  54. McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension: the role of superoxide anion. Hypertension. 1999;34:539–45.

    CAS  PubMed  Google Scholar 

  55. Jacobsen JC, Hornbech MS, Holstein-Rathlou NH. Significance of microvascular remodelling for the vascular flow reserve in hypertension. Interface Focus. 2011;1:117–31.

    PubMed  Google Scholar 

  56. Atochin DN, Schepetkin IA, Khlebnikov AI, Seledtsov VI, Swanson H, Quinn MT, et al. A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice. Neurosci Lett. 2016;618:45–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M.Task Force Members et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    CAS  PubMed  Google Scholar 

  58. Ciuffetti G, Pasqualini L, Pirro M, Lombardini R, De Sio M, Schillaci G, et al. Blood rheology in men with essential hypertension and capillary rarefaction. J Hum Hypertens. 2002;16:533–7.

    CAS  PubMed  Google Scholar 

  59. Meiselman HJ, Baskurt OK. Hemorheology and hemodynamics: dove andare? Clin Hemorheol Microcirc. 2006;35:37–43. PubMed PMID: 16899904

  60. Letcher RL, Chien S, Pickering TG, Sealey JE, Laragh JH. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role fibrinogen and concentration. Am J Med. 1981;70:1195–202.

    CAS  PubMed  Google Scholar 

  61. Ajmani RS. Hypertension and hemorheology. Clin Hemorheol Microcirc. 1997;17:397–420. PubMed PMID: 9502525

    CAS  PubMed  Google Scholar 

  62. Linde T, Sandhagen B, Hagg A Mörlin C, Danielson BG. Decreased blood viscosity and serum levels of erythropoietin after anti-hypertensive treatment with amlodipine or metoprolol: results of a cross-over study. J Hum Hypertens. 1996;10:199–205. PubMed PMID: 8733040

  63. Cicco G, Carbonara MC, Stingi GD, Pirrelli A. Cytosolic calcium and hemorheological patterns during arterial hypertension. Clin Hemorheol Microcirc. 2001;24:25–31. PubMed PMID: 11345231

    CAS  PubMed  Google Scholar 

  64. Muravyov AV, Meiselman JH, Yakusevich VV, Zamishlayev AV. Effects of antihypertensive therapy on hemorheological profiles in female hypertensive patients with initially low or high whole blood viscosity. Clin Hemorheol Microcirc. 2002;26:125–35. PubMed PMID: 12082261

    CAS  PubMed  Google Scholar 

  65. Mchedlishvili G, Tsinamdzvrihvili B, Momtselidze N, Beritashvili N. Kinetics of beneficial effect of pentoxifylline on persistent forms of arterial hypertension. Clin Hemorheol Microcirc. 1998;18:285–90. PubMed PMID: 9741669

    CAS  PubMed  Google Scholar 

  66. Cinar Y, Demir G, Pac M, Cinar AB. Effect of hematocrit on blood pressure via hyperviscosity. Am J Hypertens. 1999;12:739–43.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by the Tomsk Polytechnic University Competitiveness Enhancement Program. The blood pressure investigation was supported by Russian Science Foundation grant No. 17-15-01111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark B. Plotnikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, M.B., Aliev, O.I., Shamanaev, A.Y. et al. Antihypertensive activity of a new c-Jun N-terminal kinase inhibitor in spontaneously hypertensive rats. Hypertens Res 43, 1068–1078 (2020). https://doi.org/10.1038/s41440-020-0446-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0446-9

Keywords

Search

Quick links