Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Series-Rationale and Practical Method for Lifestyle Modification

Improving obesity and blood pressure

Abstract

Obesity-associated hypertension is a serious public health concern. Sympathetic nervous system (SNS) overactivity, especially in the kidneys, is an important mechanism linking obesity to hypertension. Some adipokines play important roles in elevating blood pressure (BP). Hyperinsulinemia caused by insulin resistance stimulates sodium reabsorption, enhances sodium retention, and increases circulating plasma volume. Hyperinsulinemia also stimulates both the renin-angiotensin-aldosterone system (RAAS) and the SNS, resulting in the acceleration of atherosclerosis through the hypertrophy of vascular smooth muscle cells, which contributes to increased peripheral vascular resistance. Obesity is associated with increased RAAS activity despite volume overload, as the tissue RAASs are stimulated in obese hypertensive individuals. Mineralocorticoid receptor-associated hypertension must also be considered in obese patients with resistant hypertension. Obstructive sleep apnea syndrome (OSAS) is the most common cause of secondary hypertension. Some components of the gut microbiota contribute to BP control; therefore, gut dysbiosis caused by obesity might lead to increased BP. The ratio of visceral fat to subcutaneous fat is higher in Japanese patients than in Caucasian patients, which may explain why Japanese patients are more susceptible to metabolic disorders even though they are less obese than Caucasian individuals. Obesity-associated kidney dysfunction directly increases BP, leading to further deterioration of kidney function. A bodyweight reduction of more than 3% or 5 kg significantly lowers BP. Gastrointestinal bypass surgery is an effective treatment for morbid obesity and its related metabolic disorders, including hypertension. Because both obesity and hypertension are representative lifestyle-related disorders, lifestyle modification, especially to improve obesity, should be performed first as a treatment for hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miura K, Nagai M, Ohkubo T. Ohkubo, epidemiology of hypertension in Japan: where are we now? Circ J. 2013;77:2226–31.

    PubMed  Google Scholar 

  2. The Japanese Society of Hypertension. Guideline Subcommittees of the Japanese Society of Hypertension. Guidelines for the Management of Hypertension JSH 2019 (in Japanese). Tokyo: Life Science Publishing Co, Ltd; 2019.

  3. Fujiyoshi A, Ohkubo T, Miura K, Murakami Y, Nagasawa SY, Okamura T, et al. Blood pressure categories and long-term risk of cardiovascular disease according to age group in Japanese men and women. Hypertens Res. 2012;35:947–53.

    PubMed  Google Scholar 

  4. Ikeda N, Saito E, Kondo N, Inoue M, Ikeda S, Satoh T, et al. What has made the population of Japan healthy? Lancet. 2011;378:1094–105.

    PubMed  Google Scholar 

  5. Turin TC, Murakami Y, Miura K, Rumana N, Kita Y, Hayakawa T, et al. Hypertension and life expectancy among Japanese: NIPPON DATA80. Hypertens Res. 2012;35:954–8.

    PubMed  Google Scholar 

  6. Yoshiike N, Seino F, Tajima S, Arai Y, Kawano M, Furuhata T, et al. Twenty-year changes in the prevalence of overweight in Japanese adults: the National Nutrition Survey 1976–95. Obes Rev. 2002;3:183–90.

    CAS  PubMed  Google Scholar 

  7. The Ministry of Health, Labor, and Welfare. The result of the 2011 National Health and Nutrition Survey in Japan. The Ministry of Health, Labor, and Welfare, Tokyo, Japan, 2013. Japanese.

  8. Miura K. Comprehensive research business on strategies to prevent/treat cardiovascular/lifestyle-related disease such as diabetes mellitus by scientific grant/subsidy from the Ministry of Health, Labour and Welfare, ‘Research on the start of follow-up of the subjects of the 2010 National Health and Nutrition Survey (NIPPON DATA2010) and continuation of NIPPON DATA80/90 follow-up’, Comprehensive/project study reports in 2012. The Ministry of Health, Labor, and Welfare, Tokyo, Japan, 2013. Japanese.

  9. Liu L, Miura K, Fujiyoshi A, Kadota A, Miyagawa N, Nakamura Y, et al. Impact of metabolic syndrome on the risk of cardiovascular disease mortality in the United States and in Japan. Am J Cardiol. 2014;113:84–9.

    PubMed  Google Scholar 

  10. The ministry of Welfare, Japan. Report of the National Nutrition Survey in 1990. Tokyo, Japan: Daiichi-Shuppan;1992, 121. Japanese.

  11. Kuwabara M, Kuwabara R, Niwa K, Hisatome I, Smits G, Roncal-Jimenez CA, et al. Different risk for hypertension, diabetes, dyslipidemia, and hyperuricemia according to level of body mass index in Japanese and American subjects. Nutrients. 2018;10:e1011. https://doi.org/10.3390/nu10081011.

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Gu D, Huang J, Rao DC, Jaquish CE, Hixson JE, et al. Metabolic syndrome and salt sensitivity of blood pressure in non-diabetic people in China: a dietary intervention study. Lancet. 2009;373:829–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jood K, Jern C, Wilhelmsen L, Rosengren A. Body mass index in mid-life is associated with a first stroke in men: a prospective population study over 28 years. Stroke. 2004;35:2764–9.

    PubMed  Google Scholar 

  14. Widlansky ME, Sesso HD, Rexrode KM, Manson JE, Gaziano JM. Body mass index and total and cardiovascular mortality in men with a history of cardiovascular disease. Arch Intern Med. 2004;164:2326–32.

    PubMed  Google Scholar 

  15. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305–13.

    PubMed  Google Scholar 

  16. Pilz B, Brasen JH, Schneider W, Luft FC. Obesity and hypertension-induced restrictive cardiomyopathy: a harbinger of things to come. Hypertension. 2004;43:911–7.

    CAS  PubMed  Google Scholar 

  17. Tanaka M, Itoh H. Hypertension as a metabolic disorder and the novel role of the gut. Curr Hypertens Rep. 2019;21:e63. https://doi.org/10.1007/s11906-019-0964-5.

    Article  Google Scholar 

  18. Ma Y, He FJ, MacGregor GA. High salt intake: independent risk factor for obesity? Hypertension. 2015;66:843–9.

    CAS  PubMed  Google Scholar 

  19. He FJ, Marrero NM, MacGregor GA. Salt intake is related to soft drink consumption in children and adolescents: a link to obesity? Hypertension. 2008;51:629–34.

    CAS  PubMed  Google Scholar 

  20. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48:787–96.

    CAS  PubMed  Google Scholar 

  21. Jones DW, Kim JS, Andrew ME, Kim SJ, Hong YP. Body mass index and blood pressure in Korean men and women: the Korean National Blood Pressure Survey. J Hypertens. 1994;12:1433–7.

    CAS  PubMed  Google Scholar 

  22. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    PubMed  Google Scholar 

  23. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350:2549–57.

    CAS  PubMed  Google Scholar 

  24. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115:1029–38.

    CAS  PubMed  Google Scholar 

  25. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mancia G, Bousquet P, Elghozi JL, Esler M, Grassi G, Julius S, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909–20.

    CAS  PubMed  Google Scholar 

  27. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliveira-Sales EB, Colombari E, Abdala AP, Campos RR, Paton JF. Sympathetic overactivity occurs before hypertension in the two-kidney, one-clip model. Exp Physiol. 2016;101:67–80.

    PubMed  Google Scholar 

  29. Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50:862–8.

    CAS  PubMed  Google Scholar 

  30. Seravalle G, Grassi G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High Blood Press Cardiovasc Prev. 2016;23:175–9.

    CAS  PubMed  Google Scholar 

  31. Lambert EA, Straznicky NE, Dixon JB, Lambert GW. Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity? Am J Physiol Heart Circ Physiol. 2015;309:H244–258.

    CAS  PubMed  Google Scholar 

  32. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:e341583. https://doi.org/10.1155/2015/341583.

    Article  CAS  Google Scholar 

  33. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8:e665. https://doi.org/10.3389/fphys.2017.00665. eCollection 2017.

    Article  Google Scholar 

  34. Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res. 2007;101:27–39.

    CAS  PubMed  Google Scholar 

  35. Leggio M, Lombardi M, Caldarone E, Severi P, D’Emidio S, Armeni M, et al. The relationship between obesity and hypertension: an updated comprehensive overview on vicious twins. Hypertens Res. 2017;40:947–63.

    PubMed  Google Scholar 

  36. Simonds SE, Pryor JT, Ravussin E, Greenway FL, Dileone R, Allen AM, et al. Leptin mediates the increase in blood pressure associated with obesity. Cell. 2014;159:1404–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang-Christensen M, Havel PJ, Jacobs RR, Larsen PJ, Cameron JL. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J Clin Endocrinol Metab. 1999;84:711–7.

    CAS  PubMed  Google Scholar 

  38. Mark AL, Correia ML, Rahmouni K, Haynes WG. Loss of leptin actions in obesity: two concepts with cardiovascular implications. Clin Exp Hypertens. 2004;26:629–36.

    CAS  PubMed  Google Scholar 

  39. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116:991–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aguilar-Salinas CA, Garcia EG, Robles L, Riano D, Ruiz-Gomez DG, Garcia-Ulloa AC, et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008;93:4075–9.

    CAS  PubMed  Google Scholar 

  41. DeFronzo RA. Insulin and renal sodium handling: clinical implications. Int J Obes. 1981;5 Suppl 1:93–104.

    CAS  PubMed  Google Scholar 

  42. Hausberg M, Mark AL, Hoffman RP, Sinkey CA, Anderson EA. Dissociation of sympathoexcitatory and vasodilator actions of modestly elevated plasma insulin levels. J Hypertens. 1995;13:1015–21.

    CAS  PubMed  Google Scholar 

  43. Calhoun DA, Nishizaka MK, Zaman MA, Harding SM. Aldosterone excretion among subjects with resistant hypertension and symptoms of sleep apnea. Chest. 2004;125:112–7.

    CAS  PubMed  Google Scholar 

  44. Dzau V. The cardiovascular continuum and renin-angiotensin-aldosterone system blockade. J Hypertens. 2005;23 Suppl:S9–17.

    Google Scholar 

  45. Frigolet ME, Torres N, Tovar AR. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem. 2013;24:2003–15.

    CAS  PubMed  Google Scholar 

  46. Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN, Williams GH, et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab. 2007;92:4472–5.

    CAS  PubMed  Google Scholar 

  47. Jeon JH, Kim KY, Kim JH, Baek A, Cho H, Lee YH, et al. A novel adipokine CTRP1 stimulates aldosterone production. Faseb J. 2008;22:1502–11.

    CAS  PubMed  Google Scholar 

  48. Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132:2134–45.

    CAS  PubMed  Google Scholar 

  49. Reincke M, Fischer E, Gerum S, Merkle K, Schulz S, Pallauf A, et al. Observational study mortality in treated primary aldosteronism: the German Conn’s registry. Hypertension. 2012;60:618–24.

    CAS  PubMed  Google Scholar 

  50. Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab. 2006;91:454–9.

    CAS  PubMed  Google Scholar 

  51. Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012;25:514–23.

    CAS  PubMed  Google Scholar 

  52. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    CAS  PubMed  Google Scholar 

  53. Sasanabe R, Banno K, Otake K, Hasegawa R, Usui K, Morita M, et al. Metabolic syndrome in Japanese patients with obstructive sleep apnea syndrome. Hypertens Res. 2006;29:315–22.

    PubMed  Google Scholar 

  54. Shiina K, Tomiyama H, Takata Y, Usui Y, Asano K, Hirayama Y, et al. Concurrent presence of metabolic syndrome in obstructive sleep apnea syndrome exacerbates the cardiovascular risk: a sleep clinic cohort study. Hypertens Res. 2006;29:433–41.

    PubMed  Google Scholar 

  55. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342:1378–84.

    CAS  PubMed  Google Scholar 

  56. Gus M, Goncalves SC, Martinez D, de Abreu Silva EO, Moreira LB, Fuchs SC, et al. Risk for Obstructive Sleep Apnea by Berlin Questionnaire, but not daytime sleepiness, is associated with resistant hypertension: a case-control study. Am J Hypertens. 2008;21:832–5.

    PubMed  Google Scholar 

  57. Amin R, Somers VK, McConnell K, Willging P, Myer C, Sherman M, et al. Activity-adjusted 24-hour ambulatory blood pressure and cardiac remodeling in children with sleep disordered breathing. Hypertension. 2008;51:84–91.

    CAS  PubMed  Google Scholar 

  58. Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev. 2006;CD001106.

  59. Protogerou AD, Laaban JP, Czernichow S, Kostopoulos C, Lekakis J, Safar ME, et al. Structural and functional arterial properties in patients with obstructive sleep apnoea syndrome and cardiovascular comorbidities. J Hum Hypertens. 2008;22:415–22.

    CAS  PubMed  Google Scholar 

  60. Drager LF, Bortolotto LA, Krieger EM, Lorenzi-Filho G. Additive effects of obstructive sleep apnea and hypertension on early markers of carotid atherosclerosis. Hypertension. 2009;53:64–9.

    CAS  PubMed  Google Scholar 

  61. Mohsenin V. Sleep-related breathing disorders and risk of stroke. Stroke. 2001;32:1271–8.

    CAS  PubMed  Google Scholar 

  62. Kario K. Obstructive sleep apnea syndrome and hypertension: mechanism of the linkage and 24-h blood pressure control. Hypertens Res. 2009;32:537–41.

    CAS  PubMed  Google Scholar 

  63. Eguchi K, Kario K, Hoshide S, Ishikawa J, Morinari M, Shimada K. Nocturnal hypoxia is associated with silent cerebrovascular disease in a high-risk Japanese community-dwelling population. Am J Hypertens. 2005;18:1489–95.

    PubMed  Google Scholar 

  64. Kario K. Obstructive sleep apnea syndrome and hypertension: ambulatory blood pressure. Hypertens Res. 2009;32:428–32.

    PubMed  Google Scholar 

  65. Kurosawa H, Saisho Y, Fukunaga K, Haraguchi M, Yamasawa W, Kurihara I, et al. Association between severity of obstructive sleep apnea and glycated hemoglobin level in Japanese individuals with and without diabetes. Endocr J. 2018;65:121–7.

    PubMed  Google Scholar 

  66. Elmasry A, Lindberg E, Hedner J, Janson C, Boman G. Obstructive sleep apnoea and urine catecholamines in hypertensive males: a population-based study. Eur Respir J. 2002;19:511–7.

    CAS  PubMed  Google Scholar 

  67. Tkacova R, McNicholas WT, Javorsky M, Fietze I, Sliwinski P, Parati G, et al. Nocturnal intermittent hypoxia predicts prevalent hypertension in the European Sleep Apnoea Database cohort study. Eur Respir J. 2014;44:931–41.

    PubMed  Google Scholar 

  68. Narkiewicz K, Wolf J, Lopez-Jimenez F, Somers VK. Obstructive sleep apnea and hypertension. Curr Cardiol Rep. 2005;7:435–40.

    PubMed  Google Scholar 

  69. Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension. 2016;67:469–74.

    CAS  PubMed  Google Scholar 

  70. Wu J, Sun X, Wu Q, Li H, Li L, Feng J, et al. Disrupted intestinal structure in a rat model of intermittent hypoxia. Mol Med Rep. 2016;13:4407–13.

    CAS  PubMed  Google Scholar 

  71. Kawano Y, Nakae J, Watanabe N, Kikuchi T, Tateya S, Tamori Y, et al. Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner. Cell Metab. 2016;24:295–310.

    CAS  PubMed  Google Scholar 

  72. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3:289–306.

    PubMed  PubMed Central  Google Scholar 

  73. de la Cuesta-Zuluaga J, Mueller NT, Alvarez-Quintero R, Velasquez-Mejia EP, Sierra JA, Corrales-Agudelo V, et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients. 2018;11:e51. https://doi.org/10.3390/nu11010051.

    Article  CAS  PubMed  Google Scholar 

  74. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19.

    CAS  PubMed  Google Scholar 

  75. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139:1619–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jung TH, Park JH, Jeon WM, Han KS. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr Res Pr. 2015;9:343–9.

    CAS  Google Scholar 

  78. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    CAS  PubMed  Google Scholar 

  79. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Onal EM, Afsar B, Covic A, Vaziri ND, Kanbay M. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertens Res. 2019;42:123–40.

    PubMed  Google Scholar 

  81. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 2017;37:35–40.

    CAS  PubMed  Google Scholar 

  83. Durgan DJ. Obstructive sleep apnea-induced hypertension: role of the gut microbiota. Curr Hypertens Rep. 2017;19:e35. https://doi.org/10.1007/s11906-017-0732-3.

    Article  Google Scholar 

  84. Aron-Wisnewsky J, Clement K, Pepin JL. Nonalcoholic fatty liver disease and obstructive sleep apnea. Metabolism. 2016;65:1124–35.

    CAS  PubMed  Google Scholar 

  85. Barcelo A, Esquinas C, Robles J, Pierola J, De la Pena M, Aguilar I, et al. Gut epithelial barrier markers in patients with obstructive sleep apnea. Sleep Med. 2016;26:12–5.

    PubMed  Google Scholar 

  86. Kheirandish-Gozal L, Peris E, Wang Y, Tamae Kakazu M, Khalyfa A, Carreras A, et al. Lipopolysaccharide-binding protein plasma levels in children: effects of obstructive sleep apnea and obesity. J Clin Endocrinol Metab. 2014;99:656–63.

    CAS  PubMed  Google Scholar 

  87. Hayashi T, Boyko EJ, Leonetti DL, McNeely MJ, Newell-Morris L, Kahn SE, et al. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann Intern Med. 2004;140:992–1000.

    PubMed  Google Scholar 

  88. Kadowaki T, Sekikawa A, Murata K, Maegawa H, Takamiya T, Okamura T, et al. Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int J Obes. 2006;30:1163–5.

    CAS  Google Scholar 

  89. Huxley R, James WP, Barzi F, Patel JV, Lear SA, Suriyawongpaisal P, et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes Rev. 2008;9 Suppl 1:53–61.

    CAS  PubMed  Google Scholar 

  90. Japan Society for the Study of Obesity, editor. Guidelines for the management of obesity disease 2016, Tokyo, Japan: Life Science, 2016.

  91. He R, Yin Y, Yin W, Li Y, Zhao J, Zhang W. Prevention of pancreatic acinar cell carcinoma by Roux-en-Y Gastric Bypass Surgery. Nat Commun. 2018;9:e4183. https://doi.org/10.1038/s41467-018-06571-w.

    Article  CAS  Google Scholar 

  92. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59:1498–509.

    CAS  PubMed  Google Scholar 

  93. Kramer H, Luke A, Bidani A, Cao G, Cooper R, McGee D. Obesity and prevalent and incident CKD: the Hypertension Detection and Follow-Up Program. Am J Kidney Dis. 2005;46:587–94.

    PubMed  Google Scholar 

  94. Foster MC, Hwang SJ, Larson MG, Lichtman JH, Parikh NI, Vasan RS, et al. Overweight, obesity, and the development of stage 3 CKD: the Framingham Heart Study. Am J Kidney Dis. 2008;52:39–48.

    PubMed  PubMed Central  Google Scholar 

  95. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.

    CAS  PubMed  Google Scholar 

  96. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344:3–10.

    CAS  PubMed  Google Scholar 

  97. Siebenhofer A, Jeitler K, Berghold A, Waltering A, Hemkens LG, Semlitsch T, et al. Long-term effects of weight-reducing diets in hypertensive patients. Cochrane Database Syst Rev. 2011: CD008274. https://doi.org/10.1002/14651858.CD008274.pub2.

  98. He FJ, MacGregor GA. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J Hum Hypertens. 2002;16:761–70.

    CAS  PubMed  Google Scholar 

  99. Nakamura K, Okamura T, Hayakawa T, Hozawa A, Kadowaki T, Murakami Y, et al. The proportion of individuals with alcohol-induced hypertension among total hypertensives in a general Japanese population: NIPPON DATA90. Hypertens Res. 2007;30:663–8.

    PubMed  Google Scholar 

  100. Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, Cook JV, et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens. 2006;24:215–33.

    CAS  PubMed  Google Scholar 

  101. Muramoto A, Matsushita M, Kato A, Yamamoto N, Koike G, Nakamura M, et al. Three percent weight reduction is the minimum requirement to improve health hazards in obese and overweight people in Japan. Obes Res Clin Pract. 2014;8:e466–475.

    PubMed  Google Scholar 

  102. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.

    CAS  PubMed  Google Scholar 

  103. Semlitsch T, Jeitler K, Berghold A, Horvath K, Posch N, Poggenburg S, et al. Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev. 2016;3:CD008274. https://doi.org/10.1002/14651858.CD008274.pub3.

    Article  PubMed  Google Scholar 

  104. Jorgensen T, Borch-Johnsen K, Thomsen TF, Ibsen H, Glumer C, Pisinger C. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur J Cardiovasc Prev Rehabil. 2003;10:377–86.

    PubMed  Google Scholar 

  105. Seven E, Husemoen LL, Wachtell K, Ibsen H, Linneberg A, Jeppesen JL. Five-year weight changes associate with blood pressure alterations independent of changes in serum insulin. J Hypertens. 2014;32:2231–7.

    CAS  PubMed  Google Scholar 

  106. Ryan DH, Espeland MA, Foster GD, Haffner SM, Hubbard VS, Johnson KC, et al. Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials. 2003;24:610–28.

    PubMed  Google Scholar 

  107. Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, Clark JM, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30:1374–83.

    PubMed  Google Scholar 

  108. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:1481–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284:3015–21.

    CAS  PubMed  Google Scholar 

  110. Sherrill DL, Kotchou K, Quan SF. Association of physical activity and human sleep disorders. Arch Intern Med. 1998;158:1894–8.

    CAS  PubMed  Google Scholar 

  111. Kuhlmann U, Bormann FG, Becker HF. Obstructive sleep apnoea: clinical signs, diagnosis and treatment. Nephrol Dial Transpl. 2009;24:8–14.

    Google Scholar 

  112. Chirinos JA, Gurubhagavatula I, Teff K, Rader DJ, Wadden TA, Townsend R, et al. CPAP, weight loss, or both for obstructive sleep apnea. N Engl J Med. 2014;370:2265–75.

    PubMed  PubMed Central  Google Scholar 

  113. Barzilay JI, Howard AG, Evans GW, Fleg JL, Cohen RM, Booth GL, et al. Intensive blood pressure treatment does not improve cardiovascular outcomes in centrally obese hypertensive individuals with diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Blood Pressure Trial. Diabetes Care. 2012;35:1401–5.

    PubMed  PubMed Central  Google Scholar 

  114. Zhu Z, Xiong S, Liu D. The gastrointestinal tract: an initial organ of metabolic hypertension? Cell Physiol Biochem. 2016;38:1681–94.

    CAS  PubMed  Google Scholar 

  115. Ahmed AR, Rickards G, Coniglio D, Xia Y, Johnson J, Boss T, et al. Laparoscopic Roux-en-Y gastric bypass and its early effect on blood pressure. Obes Surg. 2009;19:845–9.

    PubMed  Google Scholar 

  116. Rodriguez A, Becerril S, Valenti V, Moncada R, Mendez-Gimenez L, Ramirez B, et al. Short-term effects of sleeve gastrectomy and caloric restriction on blood pressure in diet-induced obese rats. Obes Surg. 2012;22:1481–90.

    PubMed  Google Scholar 

  117. Ochner CN, Gibson C, Shanik M, Goel V, Geliebter A. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes. 2011;35:153–66.

    CAS  Google Scholar 

  118. Docherty NG, Fandriks L, le Roux CW, Hallersund P, Werling M. Urinary sodium excretion after gastric bypass surgery. Surg Obes Relat Dis. 2017;13:1506–14.

    PubMed  Google Scholar 

  119. Lin BY, Lin WD, Huang CK, Hsin MC, Lin WY, Pryor AD. Changes of gut microbiota between different weight reduction programs. Surg Obes Relat Dis. 2019;15:749–58.

    PubMed  Google Scholar 

  120. Chen X, Gui G, Ji W, Xue Q, Wang C, Li H. The relationship between obesity subtypes based on BMI and cardio-cerebrovascular disease. Hypertens Res. 2019;42:912–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Tanaka.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M. Improving obesity and blood pressure. Hypertens Res 43, 79–89 (2020). https://doi.org/10.1038/s41440-019-0348-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0348-x

Keywords

This article is cited by

Search

Quick links