Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Screening for gene doping transgenes in horses via the use of massively parallel sequencing

Abstract

Throughout the history of horse racing, doping techniques to suppress or enhance performance have expanded to match the technology available. The next frontier in doping, both in the equine and human sports areas, is predicted to be genetic manipulation; either by prohibited use of genome editing, or gene therapy via transgenes. By using massively-parallel sequencing via a two-step PCR method we can screen for multiple doping targets at once in pooled primer sets. This method has the advantages of high scalability through combinational indexing, and the use of reference standards with altered sequences as controls. Custom software produces transgene-specific amplicons from any Ensembl-annotated genome to facilitate rapid assay design. Additional scripts batch-process FASTQ data from experiments, automatically quality-filtering sequences and assigning hits based on discriminatory motifs. We report here our experiences in establishing the workflow with an initial 31 transgene and vector feature targets. To evaluate the sensitivity of parallel sequencing in a real-world setting, we performed an intramuscular (IM) administration of a control rAAV vector into two horses and compared the detection sensitivity between parallel sequencing and real-time qPCR. Vector was detected by all assays on both methods up to 79 h post-administration, becoming sporadic after 96 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-step PCR generation of sequencing-ready amplicons.
Fig. 2: Spiking of EPO transgene templates at different copy numbers within primer and reference gene block pools.
Fig. 3: Sequence motif hits for the EPO transgene (orange) and altered reference blocks (blue) for primer pool sets 1 and 2.
Fig. 4: VEGFA transgene spiking of plasma and urine samples, comparing qPCR Ct values from varying initial spiking quantities and MPS motif read counts (primer set 1).
Fig. 5: Detection of target rAAV6-GFP features from the two horses used in the administration study over time, comparing qPCR and parallel sequencing results.

Similar content being viewed by others

Code availability

Please contact the corresponding author if you wish to access the code used for the design and analysis scripts. Availability is subject to approval from the British Horseracing Authority.

References

  1. Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP, et al. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci USA. 2006;103:419–24.

    Article  CAS  PubMed  Google Scholar 

  2. Williams PD, Kingston PA. Plasmid-mediated gene therapy for cardiovascular disease. Cardiovasc Res. 2011;91:565–76.

    Article  CAS  PubMed  Google Scholar 

  3. Shimpo M, Ikeda U, Maeda Y, Takahashi M, Miyashita H, Mizukami H, et al. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hindlimb ischemia model. Cardiovasc Res. 2002;53:993–1001.

    Article  CAS  PubMed  Google Scholar 

  4. Xiao X, Li J, Samulski RJ, McCullough B, Gao G-P, Wilson JM, et al. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol. 1996;70:8098–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351:407–11.

    Article  CAS  PubMed  Google Scholar 

  6. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res. 2017;27:419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovac M, Litvin YA, Aliev RO, Zakirova EY, Rutland CS, Kiyasov AP, et al. Gene therapy using plasmid DNA encoding VEGF164 and FGF2 genes: a novel treatment of naturally occurring tendinitis and desmitis in horses. Front Pharmacol. 2018;9:978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Watson Levings RS, Broome TA, Smith AD, Rice BL, Gibbs EP, Myara DA, et al. Gene therapy for osteoarthritis: pharmacokinetics of intra-articular self-complementary adeno-associated virus interleukin-1 receptor antagonist delivery in an equine model. Hum Gene Ther Clin Dev. 2018;29:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neuhaus CP, Parent B. Gene doping-In animals? Ethical issues at the intersection of animal use, gene editing, and sports ethics. Cambridge Q Healthc Ethics. 2019;28:26–39.

    Article  Google Scholar 

  10. Campbell MLH, McNamee MJ. Ethics, genetic technologies and equine sports: the prospect of regulation of a modified therapeutic use exemption policy. Sport Ethics Philos. 2020;15:1–24.

    Google Scholar 

  11. Baoutina A, Alexander IE, Rasko JEJ, Emslie KR. Developing strategies for detection of gene doping. J Gene Med. 2008;10:3–20.

    Article  CAS  PubMed  Google Scholar 

  12. Brzeziańska E, Domańska D, Jegier A. Gene doping in sport - perspectives and risks. Biol Sport. 2014;31:251–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oliveira RS, Collares TF, Smith KR, Collares TV, Seixas FK. The use of genes for performance enhancement: doping or therapy? Brazilian J Med Biol Res. 2011;44:1194–201.

    Article  CAS  Google Scholar 

  14. Garton FC, Houweling PJ, Vukcevic D, Meehan LR, Lee FXZ, Lek M, et al. The effect of ACTN3 gene doping on skeletal muscle performance. Am J Hum Genet. 2018;102:845–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou S, Murphy J, Escobedo J, Dwarki V. Adeno-associated virus-mediated delivery of erythropoietin leads to sustained elevation of hematocrit in nonhuman primates. Gene Ther. 1998;5:665–70.

    Article  CAS  PubMed  Google Scholar 

  16. Ni W, Le Guiner C, Gernoux G, Penaud-Budloo M, Moullier P, Snyder RO. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping. Gene Ther. 2011;18:709–18.

    Article  CAS  PubMed  Google Scholar 

  17. Kalbfleisch TS, Rice ES, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun Biol. 2018;1:197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 2019;48:D682–8.

    PubMed Central  Google Scholar 

  19. Baoutina A, Coldham T, Bains GS, Emslie KR. Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Ther. 2010;17:1022–32.

    Article  CAS  PubMed  Google Scholar 

  20. Sugasawa T, Aoki K, Yanazawa K, Takekoshi K. Detection of multiple transgene fragments in a mouse model of gene doping based on plasmid vector using TaqMan-qPCR assay. Genes. 2020;11:750.

    Article  CAS  PubMed Central  Google Scholar 

  21. Tozaki T, Gamo S, Takasu M, Kikuchi M, Kakoi H, Hirota K, et al. Digital PCR detection of plasmid DNA administered to the skeletal muscle of a microminipig: a model case study for gene doping detection. BMC Res Notes. 2018;11:708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tozaki T, Ohnuma A, Takasu M, Kikuchi M, Kakoi H, Hirota K, et al. Droplet digital PCR detection of the erythropoietin transgene from horse plasma and urine for gene-doping control. Genes. 2019;10:243.

    Article  CAS  PubMed Central  Google Scholar 

  23. Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota K, et al. Microfluidic quantitative PCR detection of 12 transgenes from horse plasma for gene doping control. Genes . 2020;11:457.

    Article  CAS  PubMed Central  Google Scholar 

  24. de Boer EN, van der Wouden PE, Johansson LF, van Diemen CC, Haisma HJ. A next-generation sequencing method for gene doping detection that distinguishes low levels of plasmid DNA against a background of genomic DNA. Gene Ther. 2019;26:338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salamin O, Kuuranne T, Saugy M, Leuenberger N. Loop‐mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on‐site detection of gene doping. Drug Test Anal. 2017;9:1731–7.

    Article  CAS  PubMed  Google Scholar 

  26. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 2015;25:1030–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Xu Z, Tian Z, Zhang X, Xu D, Li Q, et al. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J Cell Mol Med. 2017;21:3044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hitoshi N, Ken-ichi Y, Jun-ichi M. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991;108:193–9.

    Article  Google Scholar 

  30. Baoutina A, Bhat S, Zheng M, Partis L, Dobeson M, Alexander IE, et al. Synthetic certified DNA reference material for analysis of human erythropoietin transgene and transcript in gene doping and gene therapy. Gene Ther. 2016;23:708–17.

    Article  CAS  PubMed  Google Scholar 

  31. Bruntraeger M, Byrne M, Long K, Bassett AR. Editing the genome of human induced pluripotent stem cells using CRISPR/Cas9 ribonucleoprotein complexes. Methods Mol. Biol. 2019;1961:153–83.

    Article  CAS  PubMed  Google Scholar 

  32. Gleeson D, Sethi D, Platte R, Burvill J, Barrett D, Akhtar S, et al. High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing. Methods. 2020. https://doi.org/10.1016/j.ymeth.2020.10.011.

  33. Lowe N, Rees JS, Roote J, Ryder E, Armean IM, Johnson G, et al. Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development. 2014;141:3994–4005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seita Y, Tsukiyama T, Iwatani C, Tsuchiya H, Matsushita J, Azami T, et al. Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body. Sci Rep. 2016;6:24868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. György B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F, Hanlon KS, et al. Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of usher syndrome 3A and transduces hair cells in a non-human primate. Mol Ther Methods Clin Dev. 2019;13:1–13.

    Article  PubMed  CAS  Google Scholar 

  36. Bey K, Ciron C, Dubreil L, Deniaud J, Ledevin M, Cristini J, et al. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders. Gene Ther. 2017;24:325–32.

    Article  CAS  PubMed  Google Scholar 

  37. Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, et al. Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med. 2016;8:348ra98.

    Article  PubMed  CAS  Google Scholar 

  38. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL, et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther. 2004;10:671–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh A, Yue Y, Duan D. Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med. 2006;8:298.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med. 2004;10:828–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD, et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood. 2006;108:107–15.

    Article  CAS  PubMed  Google Scholar 

  42. Stone D, Liu Y, Li Z-Y, Strauss R, Finn EE, Allen JM, et al. Biodistribution and safety profile of recombinant adeno-associated virus serotype 6 vectors following intravenous delivery. J Virol. 2008;82:7711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahmetov II, Egorova ES, Gabdrakhmanova LJ, Fedotovskaya ON. Genes and athletic performance: an update. Med Sport Sci. 2016;61:41–54.

    Article  PubMed  Google Scholar 

  44. Schröder W, Klostermann A, Distl O. Candidate genes for physical performance in the horse. Vet J. 2011;190:39–48.

    Article  PubMed  CAS  Google Scholar 

  45. Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal. 2017;9:1456–71.

    Article  CAS  PubMed  Google Scholar 

  46. Gu J, Mac Hugh DE, McGivney BA, Park SDE, Katz LM, Hill EW. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet J. 2010;42:569–75.

    Article  Google Scholar 

  47. Gao Z, Herrera-Carrillo E, Berkhout B. A single H1 promoter can drive both guide RNA and endonuclease expression in the CRISPR-Cas9 system. Mol Ther Nucleic Acids. 2019;14:32–40.

    Article  CAS  PubMed  Google Scholar 

  48. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745.

    Article  PubMed  CAS  Google Scholar 

  50. Quail MA, Swerdlow H, Turner DJ, Swerdlow H. Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet. 2009;62:18.2.1–18.2.27

    Google Scholar 

  51. Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol. 2019;37:761–74.

    Article  CAS  PubMed  Google Scholar 

  52. Tenover FC, Huang MB, Rasheed JK, Persing DH. Development of PCR assays to detect ampicillin resistance genes in cerebrospinal fluid samples containing Haemophilus influenzae. J Clin Microbiol. 1994;32:2729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wingo TS, Kotlar A, Cutler DJ. MPD: multiplex primer design for next-generation targeted sequencing. BMC Bioinformatics. 2017;18:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ponti G, Maccaferri M, Manfredini M, Kaleci S, Mandrioli M, Pellacani G, et al. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clin Chim Acta. 2018;479:14–19.

    Article  CAS  PubMed  Google Scholar 

  57. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA. Evaluation of digital PCR for absolute DNA quantification. Anal Chem. 2011;83:6474–84.

    Article  CAS  PubMed  Google Scholar 

  58. Calcedo R, Franco J, Qin Q, Richardson DW, Mason JB, Boyd S, et al. Preexisting neutralizing antibodies to adeno-associated virus capsids in large animals other than monkeys may confound in vivo gene therapy studies. Hum Gene Ther Methods. 2015;26:103–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haughan J, Jiang Z, Stefanovski D, Moss KL, Ortved KF, Robinson MA. Detection of intra-articular gene therapy in horses using quantitative real time PCR in synovial fluid and plasma. Drug Test Anal. 2020;12:743–51.

    Article  CAS  PubMed  Google Scholar 

  60. Thieme D, Grosse J, Lang R, Mueller R, Wahl A. Screening, confirmation and quantitation of diuretics in urine for doping control analysis by high-performance liquid chromatography–atmospheric pressure ionisation tandem mass spectrometry. J Chromatogr B Biomed Sci Appl. 2001;757:49–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The British Horseracing Authority (BHA) for funding the analytical work carried out for this study and conducting the animal administrations of the rAAV vector. Staff and students at the Centre for Racehorse Studies (CRS), UK, are also acknowledged for their care and sampling of the horses involved in this work.

Funding

This work was funded by the British Horseracing Authority (BHA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Ryder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniego, J., Pesko, B., Habershon-Butcher, J. et al. Screening for gene doping transgenes in horses via the use of massively parallel sequencing. Gene Ther 29, 236–246 (2022). https://doi.org/10.1038/s41434-021-00279-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00279-1

Search

Quick links