Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Analysis of recombinant adeno-associated viral vector shedding in sheep following intracoronary delivery

Abstract

Differences between mouse and human hearts pose a significant limitation to the value of small animal models when predicting vector behavior following recombinant adeno-associated viral (rAAV) vector-mediated cardiac gene therapy. Hence, sheep have been adopted as a preclinical animal, as they better model the anatomy and cardiac physiological processes of humans. There is, however, no comprehensive data on the shedding profile of rAAV in sheep following intracoronary delivery, so as to understand biosafety risks in future preclinical and clinical applications. In this study, sheep received intracoronary delivery of rAAV serotypes 2/6 (2 × 1012 vg), 2/8, and 2/9 (1 × 1013 vg) at doses previously administered in preclinical and clinical trials. This was followed by assessment over 96 h to examine vector shedding in urine, feces, nasal mucus, and saliva samples. Vector genomes were detected via real-time quantitative PCR in urine and feces up to 48 and 72 h post vector delivery, respectively. Of these results, functional vector particles were only detected via a highly sensitive infectious replication assay in feces samples up to 48 h following vector delivery. We conclude that rAAV-mediated gene transfer into sheep hearts results in low-grade shedding of non-functional vector particles for all excreta samples, except in the case of feces, where functional vector particles are present up to 48 h following vector delivery. These results may be used to inform containment and decontamination guidelines for large animal dealings, and to understand the biosafety risks associated with future preclinical and clinical uses of rAAV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Ginn SL, Amaya AK, Alexander IE, Edelstein M. MRA Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20:3015.

    Article  Google Scholar 

  2. Carter BJ. Adeno-associated virus vectors in clinical trials. Hum Gene Ther. 2005;16:541–50.

    Article  CAS  PubMed  Google Scholar 

  3. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nature Rev Genet. 2011;12:341–55.

    Article  CAS  PubMed  Google Scholar 

  4. Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther. 2008;15:858–63.

    Article  CAS  PubMed  Google Scholar 

  5. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli A, Bridges CR. Current strategies for myocardial gene delivery. J Mol Cell Cardiol. 2011;50:766–76.

    Article  CAS  PubMed  Google Scholar 

  7. Pacak CA, Byrne BJ. AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther. 2011;19:1582–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE. Comparative cardiac gene delivery of adeno‐associated virus serotypes 1–9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci. 2010;3:81–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tilemann L, Ishikawa K, Weber T, Hajjar RJ. Gene therapy for heart failure. Circ Res. 2012;110:777–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther. 2003;3:545–65.

    Article  CAS  PubMed  Google Scholar 

  11. Ishikawa K, Tilemann L, Ladage D, Aguero J, Leonardson L, Fish K, et al. Cardiac gene therapy in large animals: bridge from bench to bedside. Gene Ther. 2012;19:670–7.

    Article  CAS  PubMed  Google Scholar 

  12. Katz MG, Fargnoli AS, Weber T, Hajjar RJ, Bridges CR. Use of adeno-associated virus vector for cardiac gene delivery in large-animal surgical models of heart failure. Hum Gene Ther Clin Dev. 2017;28:157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beeri R, Chaput M, Guerrero JL, Kawase Y, Yosefy C, Abedat S, et al. Gene delivery of sarcoplasmic reticulum calcium ATPase inhibits ventricular remodeling in ischemic mitral regurgitation. Circ Heart Fail. 2010;3:627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther. 2008;15:1550–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chamberlain K, Riyad JM, Weber T. Cardiac gene therapy with adeno-associated virus-based vectors. Curr Opin Cardiol. 2017;32:275–82.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ferrarini M, Arsic N, Recchia FA, Zentilin L, Zacchigna S, Xu X, et al. Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in clonscious dogs. Circ Res. 2006;98:954–61.

    Article  CAS  PubMed  Google Scholar 

  17. Hinkel R, Lange P, Petersen B, Gottlieb E, Ng JK, Finger S, et al. Heme oxygenase-1 gene therapy provides cardioprotection via control of post-ischemic inflammation: an experimental study in a pre-clinical pig model. J Am Coll Cardiol. 2015;66:154–65.

    Article  CAS  PubMed  Google Scholar 

  18. Mariani JA, Smolic A, Preovolos A, Byrne MJ, Power JM, Kaye DM. Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure. Eur J Heart Fail. 2011;13:247–53.

    Article  CAS  PubMed  Google Scholar 

  19. Ishikawa K, Fish KM, Tilemann L, Rapti K, Aguero J, Santos-Gallego CG, et al. Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. Mol Ther. 2014;22:2038–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katz MG, Brandon-Warner E, Fargnoli AS, Williams RD, Kendle AP, Hajjar RJ, et al. Mitigation of myocardial fibrosis by molecular cardiac surgery-mediated gene overexpression. J Thorac Cardiovasc Surg. 2016;151:1191–200.

    Article  CAS  PubMed  Google Scholar 

  21. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med. 2011;3:92ra64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sleeper MM, Bish LT, Sweeney HL. Gene therapy in large animal models of human cardiovascular genetic disease. ILAR J. 2009;50:199–205.

    Article  CAS  PubMed  Google Scholar 

  23. Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, et al. Intracoronary cytoprotective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated cardiomyopathy. J Am Coll Cardiol. 2015;66:139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xin W, Li X, Lu X, Niu K, Cai J. Improved cardiac function after sarcoplasmic reticulum Ca(2+)-ATPase gene transfer in a heart failure model induced by chronic myocardial ischaemia. Acta Cardiol. 2011;66:57–64.

    Article  PubMed  Google Scholar 

  25. Litchev B, Monahan PE, Prener A. Adeno-associated virus 8 (AAV8) vector genome biodistribution into body fluids following single intravenous administration of BAX 335 gene therapy for hemophilia B. Blood. 2015;126:2040.

    Article  Google Scholar 

  26. Salmon F, Grosios K, Petry H. Safety profile of recombinant adeno-associated viral vectors: focus on alipogene tiparvovec (Glybera(R)). Expert Rev Clin Pharmacol. 2014;7:53–65.

    Article  CAS  PubMed  Google Scholar 

  27. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22.

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues GA, Shalaev E, Karami TK, Cunningham J, Slater NKH, Rivers HM. Pharmaceutical development of AAV-based gene therapy products for the eye. Pharm Res. 2018;36:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schenk-Braat EA, van Mierlo MM, Wagemaker G, Bangma CH, Kaptein LC. An inventory of shedding data from clinical gene therapy trials. J Gene Med. 2007;9:910–21.

    Article  PubMed  Google Scholar 

  30. Favre D, Provost N, Blouin V, Blancho G, Cherel Y, Salvetti A, et al. Immediate and long-term safety of recombinant adeno-associated virus injection into the nonhuman primate muscle. Mol Ther. 2001;4:559–66.

    Article  CAS  PubMed  Google Scholar 

  31. Gonin P, Gaillard C. Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Ther. 2004;11:S98–S108.

    Article  CAS  PubMed  Google Scholar 

  32. DiVincenti L, Westcott R, Lee C. Sheep (Ovis aries) as a model for cardiovascular surgery and management before, during, and after cardiopulmonary bypass. J Am Assoc Lab Animal Sci. 2014;53:439–48.

    Google Scholar 

  33. Snyder RO. Adeno-associated virus-mediated gene delivery. J Gene Med. 1999;1:166–75.

    Article  CAS  PubMed  Google Scholar 

  34. Choi VW, Asokan A, Haberman RA, Samulski RJ. Production of recombinant adeno-associated viral vectors. Curr Prot in Human Genetics. 2001;53:12.9.1–21.

  35. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14:316–27.

    Article  CAS  PubMed  Google Scholar 

  36. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med. 2004;10:828–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strobel B, Miller FD, Rist W, Lamla T. Comparative analysis of cesium chloride- and iodixanol-based purification of recombinant adeno-associated viral vectors for preclinical applications. Hum Gene Ther Methods. 2015;26:147–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meliani A, Leborgne C, Triffault S, Jeanson-Leh L, Veron P, Mingozzi F. Determination of anti-adeno-associated virus vector neutralizing antibody titer with an in vitro reporter system. Hum Gene Ther Methods. 2015;26:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S, et al. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther. 2012;20:73–83.

    Article  CAS  PubMed  Google Scholar 

  40. Mohammadi ES, Ketner EA, Johns DC, Ketner G. Expression of the adenovirus E4 34k oncoprotein inhibits repair of double strand breaks in the cellular genome of a 293-based inducible cell line. Nucleic Acids Res. 2004;32:2652–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moulay G, Scherman D, Kichler A. Fasting increases the in vivo gene delivery of AAV vectors. Clin Transl Sci. 2010;3:333–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ishikawa K, Ladage D, Tilemann L, Fish K, Kawase Y, Hajjar RJ. Gene transfer for ischemic heart failure in a preclinical model. J Vis Exp. 2011;51:2778.

  43. Wang G, Gentry TJ, Grass G, Josephson K, Rensing C, Pepper IL. Real-time PCR quantification of a green fluorescent protein-labeled, genetically engineered Pseudomonas putida strain during 2-chlorobenzoate degradation in soil. FEMS Microbiol Lett. 2004;233:307–14.

    Article  CAS  PubMed  Google Scholar 

  44. Chadeuf G, Favre D, Tessier J, Provost N, Nony P, Kleinschmidt J, et al. Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome. J Gene Med. 2000;2:260–8.

    Article  CAS  PubMed  Google Scholar 

  45. Zen Z, Espinoza Y, Bleu T, Sommer JM, Wright JF. Infectious titer assay for adeno-associated virus vectors with sensitivity sufficient to detect single infectious events. Hum Gene Ther. 2004;15:709–15.

    Article  PubMed  CAS  Google Scholar 

  46. Gray SJ, Choi VW, Asokan A, Haberman RA, McCown TJ, Samulski RJ. Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Curr prot in neurosci. 2011;57:4.17.1–30.

    Article  Google Scholar 

  47. Tellez J, Van Vliet K, Tseng Y-S, Finn JD, Tschernia N, Almeida-Porada G, et al. Characterization of naturally-occurring humoral immunity to AAV in sheep. PLOS ONE. 2013;8:e75142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aitken ML, Moss RB, Waltz DA, Dovey ME, Tonelli MR, McNamara SC, et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther. 2001;12:1907–16.

    Article  CAS  PubMed  Google Scholar 

  49. Nathwani AC, Davidoff AM, Hanawa H, Hu Y, Hoffer FA, Nikanorov A, et al. Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood. 2002;100:1662–9.

    Article  CAS  PubMed  Google Scholar 

  50. Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther. 2003;7:774–81.

    Article  CAS  PubMed  Google Scholar 

  51. Ye G-J, Budzynski E, Sonnentag P, Miller PE, Sharma AK, Ver Hoeve JN, et al. Safety and biodistribution evaluation in cynomolgus macaques of rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin. Hum Gene Ther Clin Dev. 2015;26:165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Markusic DM, Herzog RW. Liver-directed adeno-associated viral gene therapy for hemophilia. J Genet Syndrome Gene Ther. 2012;1:1–9.

    Google Scholar 

  53. Vandamme C, Adjali O, Mingozzi F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum Gene Ther. 2017;28:1061–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Copps J. Issues related to the use of animals in biocontainment research facilities. ILAR J. 2005;46:34–43.

    Article  CAS  PubMed  Google Scholar 

  55. Murray PK. An overview of the roles and structure of international high-security veterinary laboratories for infectious animal diseases. Rev Sci Tech. 1998;17:426–43.

    Article  CAS  PubMed  Google Scholar 

  56. Katz MG, Fargnoli AS, Swain JD, Tomasulo CE, Ciccarelli M, Huang ZM, et al. AAV6-betaARKct gene delivery mediated by molecular cardiac surgery with recirculating delivery (MCARD) in sheep results in robust gene expression and increased adrenergic reserve. J Thorac Cardiovasc Surg. 2012;143:720–6 e3.

    Article  CAS  PubMed  Google Scholar 

  57. Swain JD, Fargnoli AS, Katz MG, Tomasulo CE, Sumaroka M, Richardville KC, et al. MCARD-mediated gene transfer of GRK2 inhibitor in ovine model of acute myocardial infarction. J Cardiovasc Transl Res. 2013;6:253–62.

    Article  PubMed  Google Scholar 

  58. White JD, Thesier DM, Swain JB, Katz MG, Tomasulo C, Henderson A, et al. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Ther. 2011;18:546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work was supported by a National Health and Medical Research Council of Australia Project Grant (APP1128864) to EK, Future Leader Fellowship (ID 100463) from the National Heart Foundation of Australia (JJHC) and a Sydney Medical School Foundation Fellowship (JJHC). MF was supported by the MyWestmead Early Career Research Scholarship and Arab Bank Postgraduate Research Scholarship from the Westmead Medical Research Foundation. We acknowledge the facilities and services provided by the Westmead Institute for Medical Research and Westmead Research Hub Core facilities including the following: Microscopy, Flow Cytometry, and Genomics. We also acknowledge the facilities and staff of the Western Sydney Local Health District Large Animal Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Kizana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farraha, M., Barry, M.A., Lu, J. et al. Analysis of recombinant adeno-associated viral vector shedding in sheep following intracoronary delivery. Gene Ther 26, 399–406 (2019). https://doi.org/10.1038/s41434-019-0097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0097-0

This article is cited by

Search

Quick links