Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone deacetylase inhibitors reactivate silenced transgene in vivo

Abstract

Gene silencing for plasmid-based vectors and the underlying mechanism are critical factors for development of effective gene therapy. The objective of this study is to explore the role of epigenetic regulation for transgene expression. Two reporter genes, mouse interleukin 10 and human secreted alkaline phosphatase under the control of human cytomegalovirus immediate early promoter for expression, were delivered to mouse liver by hrodydynamics-based procedure and reporter gene expression was monitored. Reporter gene expression reached its peak level one day after gene delivery and declined progressively thereafter, reaching the minimal level in about 3 weeks. Intra-peritoneal injection of vorinostat, valproic acid or sodium butyrate, the known histone deacetylase inhibitors, resulted in a dose-dependent reactivation of reporter gene expression. Repeated administration of histone deacetylase inhibitors blocked gene silencing and maintained reporter gene expression. Mechanistic studies reveal that reactivation of reporter genes is corelated with hyperacetylation of histones H3 and H4, and elevated binding of TATA-box binding protein to the promoter region. These results suggest that epigenetic regulation plays a critical role in controlling transgene expression in vivo and demonstrate that enzymes involved in epigenetic regulation such as histone deacetylase could serve as a target to achieve controlled transgene expression for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 2000;7:401–7.

    Article  CAS  PubMed  Google Scholar 

  2. Sarukhan A, Camugli S, Gjata B, von Boehmer H, Danos O, Jooss K. Successful interference with cellular immune responses to immunogenic proteins encoded by recombinant viral vectors. J Virol. 2001;75:269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 1999;6:482–97.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou HS, Liu DP, Liang CC. Challenges and strategies: the immune responses in gene therapy. Med Res Rev. 2004;24:748–61.

    Article  CAS  PubMed  Google Scholar 

  5. Kass SU, Goddard JP, Adams RL. Inactive chromatin spreads from a focus of methylation. Mol Cell Biol. 1993;13:7372–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD, Scheule RK, et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther. 2002;5:731–8.

    Article  CAS  PubMed  Google Scholar 

  7. Chen ZY, Yant SR, He CY, Meuse L, Shen S, Kay MA. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther. 2001;3:403–10.

    Article  CAS  PubMed  Google Scholar 

  8. Baer A, Schubeler D, Bode J. Transcriptional properties of genomic transgene integration sites marked by electroporation or retroviral infection. Biochemistry. 2000;39:7041–9.

    Article  CAS  PubMed  Google Scholar 

  9. Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8:495–500.

    Article  CAS  PubMed  Google Scholar 

  10. Argyros O, Wong SP, Niceta M, Waddington SN, Howe SJ, Coutelle C, et al. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther. 2008;15:1593–605.

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs F, Snoeys J, Feng Y, Van Craeyveld E, Lievens J, Armentano D, et al. Direct comparison of hepatocyte-specific expression cassettes following adenoviral and nonviral hydrodynamic gene transfer. Gene Ther. 2008;15:594–603.

    Article  CAS  PubMed  Google Scholar 

  12. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.

    Article  CAS  PubMed  Google Scholar 

  13. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1:287–99.

    Article  CAS  PubMed  Google Scholar 

  14. Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays : News Rev Mol, Cell Dev Biol. 1998;20:615–26.

    Article  CAS  Google Scholar 

  15. Yang SH, Vickers E, Brehm A, Kouzarides T, Sharrocks AD. Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol Cell Biol. 2001;21:2802–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001;11:162–6.

    Article  CAS  PubMed  Google Scholar 

  17. Fischle W, Kiermer V, Dequiedt F, Verdin E. The emerging role of class II histone deacetylases. Biochem Cell Biol = Biochim Et Biol Cell. 2001;79:337–48.

    Article  CAS  Google Scholar 

  18. Reeves R, Gorman CM, Howard B. Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells. Nucleic Acids Res. 1985;13:3599–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cremisi C, Pignatti PF, Croissant O, Yaniv M. Chromatin-like structures in polyoma virus and simian virus 10 lytic cycle. J Virol. 1975;17:204–11.

    CAS  PubMed  Google Scholar 

  20. Polisky B, McCarthy B. Location of histones on simian virus 40 DNA. Proc Natl Acad Sci USA. 1975;72:2895–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133:2485S–93S.

    Article  CAS  PubMed  Google Scholar 

  22. Marks PA, Xu WS. Histone deacetylase inhibitors: Potential in cancer therapy. J Cell Biochem. 2009;107:600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.

    Article  CAS  PubMed  Google Scholar 

  24. MacDonald VE, Howe LJ. Histone acetylation: where to go and how to get there. Epigenetics. 2009;4:139–43.

    Article  CAS  PubMed  Google Scholar 

  25. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76:75–100.

    Article  CAS  PubMed  Google Scholar 

  26. Hochheimer A, Tjian R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev. 2003;17:1309–20.

    Article  CAS  PubMed  Google Scholar 

  27. Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 2000;34:77–137.

    Article  CAS  PubMed  Google Scholar 

  28. Davidson I. The genetics of TBP and TBP-related factors. Trends Biochem Sci. 2003;28:391–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wong SP, Argyros O, Harbottle RP. Sustained expression from DNA vectors. Adv Genet. 2015;89:113–52.

    Article  PubMed  Google Scholar 

  30. Friehs K. Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol. 2004;86:47–82.

    CAS  PubMed  Google Scholar 

  31. Al-Dosari M, Zhang G, Knapp JE, Liu D. Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver. Biochem Biophys Res Commun. 2006;339:673–8.

    Article  CAS  PubMed  Google Scholar 

  32. Schüttrumpf J, Milanov P, Abriss D, Roth S, Tonn T, Seifried E. Transgene loss and changes in the promoter methylation status as determinants for expression duration in nonviral gene transfer for factor IX. Hum Gene Ther. 2011;22:101–6.

    Article  PubMed  Google Scholar 

  33. Argyros O, Wong SP, Fedonidis C, Tolmachov O, Waddington SN, Howe SJ, et al. Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. J Mol Med. 2011;89:515–29.

    Article  CAS  PubMed  Google Scholar 

  34. Wang YH, Griffith JD. The [(G/C)3NN]n motif: a common DNA repeat that excludes nucleosomes. Proc Natl Acad Sci USA. 1996;93:8863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johansen J, Tornøe J, Møller A, Johansen TE. Increasedin vitroandin vivotransgene expression levels mediated throughcis-acting elements. J Gene Med. 2003;5:1080–9.

    Article  CAS  PubMed  Google Scholar 

  36. Miao CH, Ye X, Thompson AR. High-level factor VIII gene expression in vivo achieved by nonviral liver-specific gene therapy vectors. Hum Gene Ther. 2003;14:1297–305.

    Article  CAS  PubMed  Google Scholar 

  37. Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E, et al. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics. 2003;82:269–79.

    Article  CAS  PubMed  Google Scholar 

  38. Hagedorn C, Antoniou MN, Lipps HJ. Genomic cis-acting sequences improve expression and establishment of a nonviral vector. Mol Ther Nucleic Acids. 2013;2:e118. https://doi.org/10.1038/mtna.2013.47.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gracey Maniar LE, Maniar JM, Chen ZY, Lu J, Fire AZ, Kay MA. Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther. 2013;21:131–8.

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 2012;22:1798–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rincon-Arano H, Halow J, Delrow, Jeffrey J, Parkhurst, Susan M, et al. UpSET recruits HDAC complexes and restricts chromatin accessibility and acetylation at promoter regions. Cell. 2012;151:1214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Badding MA, Dean DA. Highly acetylated tubulin permits enhanced interactions with and trafficking of plasmids along microtubules. Gene Ther. 2013;20:616–24.

    Article  CAS  PubMed  Google Scholar 

  43. Elmer JJ, Christensen MD, Barua S, Lehrman J, Haynes KA, Rege K. The histone deacetylase inhibitor Entinostat enhances polymer-mediated transgene expression in cancer cell lines. Biotechnol Bioeng. 2016;113:1345–56.

    Article  CAS  PubMed  Google Scholar 

  44. Gorman CM, Howard BH, Reeves R. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 1983;11:7631–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001;293:1653–7.

    Article  CAS  Google Scholar 

  46. Horion J, Gloire G, El Mjiyad N, Quivy V, Vermeulen L, Vanden Berghe W, et al. Histone deacetylase inhibitor trichostatin A sustains sodium pervanadate-induced NF-kappaB activation by delaying IkappaBalpha mRNA resynthesis: comparison with tumor necrosis factor alpha. J Biol Chem. 2007;282:15383–93.

    Article  CAS  PubMed  Google Scholar 

  47. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

    Article  CAS  PubMed  Google Scholar 

  48. Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell. 2002;109:551–62.

    Article  CAS  PubMed  Google Scholar 

  49. Sun FL, Elgin SC. Putting boundaries on silence. Cell. 1999;99:459–62.

    Article  CAS  PubMed  Google Scholar 

  50. Ghirlando R, Giles K, Gowher H, Xiao T, Xu Z, Yao H, et al. Chromatin domains, insulators, and the regulation of gene expression. Biochim Biophys Acta. 2012;1819:644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nishihara M, Kanda GN, Suzuki T, Yamakado S, Harashima H, Kamiya H. Enhanced transgene expression by plasmid-specific recruitment of histone acetyltransferase. J Biosci Bioeng. 2017;123:277–80.

    Article  CAS  PubMed  Google Scholar 

  52. Sugiyama KI, Furusawa H, Gruz P, Honma M (2017). Functional role of DNA methylation at the FLO1 promoter in budding yeast. FEMS Microbiol Lett. 2017;fnx221. https://doi.org/10.1093/femsle/fnx221.

  53. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6:1258–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from NIH (RO1EB007357 and RO1HL098295). We are grateful to Dr. Leping Li at the National Institute of Environmental Health Sciences for providing the sequence information regarding the transcription factor binding sites in CMV promotor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, G. & Liu, D. Histone deacetylase inhibitors reactivate silenced transgene in vivo. Gene Ther 26, 75–85 (2019). https://doi.org/10.1038/s41434-018-0053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0053-4

Search

Quick links