Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain

Abstract

The successful application of adeno-associated virus (AAV) gene delivery vectors as a therapeutic paradigm will require efficient gene delivery to the appropriate cells in affected organs. In this study, we utilized a rational design approach to introduce modifications to the AAV2 and AAVrh8R capsids and the resulting variants were evaluated for transduction activity in the retina and brain. The modifications disrupted either capsid/receptor binding or altered capsid surface charge. Specifically, we mutated AAV2 amino acids R585A and R588A, which are required for binding to its receptor, heparan sulfate proteoglycans, to generate a variant referred to as AAV2-HBKO. In contrast to parental AAV2, the AAV2-HBKO vector displayed low-transduction activity following intravitreal delivery to the mouse eye; however, following its subretinal delivery, AAV2-HBKO resulted in significantly greater photoreceptor transduction. Intrastriatal delivery of AAV2-HBKO to mice facilitated widespread striatal and cortical expression, in contrast to the restricted transduction pattern of the parental AAV2 vector. Furthermore, we found that altering the surface charge on the AAVrh8R capsid by modifying the number of arginine residues on the capsid surface had a profound impact on subretinal transduction. The data further validate the potential of capsid engineering to improve AAV gene therapy vectors for clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr., Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887–1897.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet. 2017;390:50–61.

    Article  CAS  PubMed  Google Scholar 

  5. Constable IJ, Pierce CM, Lai CM, Magno AL, Degli-Esposti MA, French MA, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 2016;14:168–175.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther. 2010;18:1731–1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N, et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet. 1996;5:591–594.

    Article  CAS  PubMed  Google Scholar 

  8. Bartlett JS, Samulski RJ, McCown TJ. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther. 1998;9:1181–1186.

    Article  CAS  PubMed  Google Scholar 

  9. Bennett J, Maguire AM, Cideciyan AV, Schnell M, Glover E, Anand V, et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA. 1999;96:9920–9925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004;10:302–317.

    Article  CAS  PubMed  Google Scholar 

  11. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA. 2000 97:3428–3432.

    Article  CAS  Google Scholar 

  12. Markakis EA, Vives KP, Bober J, Leichtle S, Leranth C, Beecham J, et al. Comparative transduction efficiency of AAV vector serotypes 1-6 in the substantia nigra and striatum of the primate brain. Mol Ther. 2010;18:588–593.

    Article  CAS  PubMed  Google Scholar 

  13. Yang GS, Schmidt M, Yan Z, Lindbloom JD, Harding TC, Donahue BA, et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol. 2002;76:7651–7660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DiMattia MA, Nam HJ, Van Vliet K, Mitchell M, Bennett A, Gurda BL, et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol. 2012;86:6947–6958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Govindasamy L, DiMattia MA, Gurda BL, Halder S, McKenna R, Chiorini JA, et al. Structural insights into adeno-associated virus serotype 5. J Virol. 2013;87:11187–11199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Govindasamy L, Padron E, McKenna R, Muzyczka N, Kaludov N, Chiorini JA, et al. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J Virol. 2006;80:11556–11570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lerch TF, Xie Q, Chapman MS. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. Virology. 2010;403:26–36.

    Article  CAS  PubMed  Google Scholar 

  18. Mikals K, Nam HJ, Van Vliet K, Vandenberghe LH, Mays LE, McKenna R, et al. The structure of AAVrh32.33, a novel gene delivery vector. J Struct Biol. 2014;186:308–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nam HJ, Lane MD, Padron E, Gurda B, McKenna R, Kohlbrenner E, et al. Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol. 2007;81:12260–12271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng R, Govindasamy L, Gurda BL, McKenna R, Kozyreva OG, Samulski RJ, et al. Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol. 2010;84:12945–12957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie Q, Lerch TF, Meyer NL, Chapman MS. Structure-function analysis of receptor-binding in adeno-associated virus serotype 6 (AAV-6). Virology. 2011;420:10–9.

    Article  CAS  PubMed  Google Scholar 

  22. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem. 2011;286:13532–13540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72:1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Walters RW, Yi SM, Keshavjee S, Brown KE, Welsh MJ, Chiorini JA, et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem. 2001;276:20610–20616.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ. Alpha2,3 andalpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol. 2006;80:9093–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17:2096–2102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woodard KT, Liang KJ, Bennett WC, Samulski RJ. Heparan sulfate binding promotes accumulation of intravitreally delivered adeno-associated viral vectors at the retina for enhanced transduction but weakly influences tropism. J Virol. 2016;90:9878–9888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hellstrom M, Ruitenberg MJ, Pollett MA, Ehlert EM, Twisk J, Verhaagen J, et al. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther. 2009;16:521–532.

    Article  CAS  PubMed  Google Scholar 

  29. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol. 2006;80:11393–11397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M, et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol. 2007;81:11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lebherz C, Maguire A, Tang W, Bennett J, Wilson JM. Novel AAV serotypes for improved ocular gene transfer. J Gene Med. 2008;10:375–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, et al. A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther. 2006;14:571–571.

    Article  CAS  PubMed  Google Scholar 

  33. Mastakov MY, Baer K, Kotin RM, During MJ. Recombinant adeno-associated virus serotypes 2- and 5-mediated gene transfer in the mammalian brain: quantitative analysis of heparin co-infusion. Mol Ther. 2002;5:371–80.

    Article  CAS  PubMed  Google Scholar 

  34. Arnett AL, Beutler LR, Quintana A, Allen J, Finn E, Palmiter RD, et al. Heparin-binding correlates with increased efficiency of AAV1- and AAV6-mediated transduction of striated muscle, but negatively impacts CNS transduction. Gene Ther. 2013;20:497–503.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen JB, Sanchez-Pernaute R, Cunningham J, Bankiewicz KS. Convection-enhanced delivery of AAV-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport. 2001;12:1961–1964.

    Article  CAS  PubMed  Google Scholar 

  36. Vandenberghe LH, Breous E, Nam HJ, Gao G, Xiao R, Sandhu A, et al. Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints. Gene Ther. 2009;16:1416–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Halbert CL, Allen JM, Miller AD. Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol. 2001;75:6615–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Handa A, Muramatsu S, Qiu J, Mizukami H, Brown KE. Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol. 2000;81:2077–2084.

    Article  CAS  PubMed  Google Scholar 

  39. Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PLoS ONE. 2009;4:e7467.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol. 2002;76:791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L, et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther. 2007;18:195–206.

    Article  CAS  PubMed  Google Scholar 

  42. Cearley CN, Wolfe JH. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther. 2006;13:528–537.

    Article  CAS  PubMed  Google Scholar 

  43. Ciesielska A, Hadaczek P, Mittermeyer G, Zhou S, Wright JF, Bankiewicz KS, et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther. 2013;21:158–166.

    Article  CAS  PubMed  Google Scholar 

  44. Halder S, Van Vliet K, Smith JK, Duong TT, McKenna R, Wilson JM, et al. Structure of neurotropic adeno-associated virus AAVrh.8. J Struct Biol. 2015;192:21–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanaan NM, Sellnow RC, Boye SL, Coberly B, Bennett A, Agbandje-McKenna M, et al. Rationally engineered AAV capsids improve transduction and volumetric spread in the CNS. Mol Ther Acids. 2017;8:184–197.

    Article  CAS  Google Scholar 

  46. Boye SL, Bennett A, Scalabrino ML, McCullough KT, Van Vliet K, Choudhury S, et al. Impact of heparan sulfate binding on transduction of retina by recombinant adeno-associated virus vectors. J Virol. 2016;90:4215–4231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol. 2010;28:79–82.

    Article  CAS  PubMed  Google Scholar 

  48. Opie SR, Warrington KH Jr, Agbandje-McKenna M, Zolotukhin S, Muzyczka N. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol. 2003;77:6995–7006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kern A, Schmidt K, Leder C, Muller OJ, Wobus CE, Bettinger K, et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol. 2003;77:11072–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz WM, Katus HA, et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res. 2006;70:70–78.

    Article  PubMed  Google Scholar 

  51. Hadaczek P, Stanek L, Ciesielska A, Sudhakar V, Samaranch L, Pivirotto P, et al. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington’s disease. Mol Ther Methods Clin Dev. 2016;3:16037.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72:2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Burnham B, Nass S, Kong E, Mattingly M, Woodcock D, Song A, et al. Analytical ultracentrifugation as an approach to characterize recombinant adeno-associated viral vectors. Hum Gene Ther Methods. 2015;26:228–242.

    Article  CAS  PubMed  Google Scholar 

  54. Martin J, Frederick A, Luo Y, Jackson R, Joubert M, Sol B, et al. Generation and characterization of adeno-associated virus producer cell lines for research and preclinical vector production. Hum Gene Ther Methods. 2013;24:253–269.

    Article  CAS  PubMed  Google Scholar 

  55. Ayuso E, Mingozzi F, Montane J, Leon X, Anguela XM, Haurigot V, et al. High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther. 2010;17:503–510.

    Article  CAS  PubMed  Google Scholar 

  56. Treleaven CM, Tamsett TJ, Bu J, Fidler JA, Sardi SP, Hurlbut GD, et al. Gene transfer to the CNS is efficacious in immune-primed mice harboring physiologically relevant titers of anti-AAV antibodies. Mol Ther. 2012;20:1713–1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Sanofi Vector Production Group (Denise Woodcock, Shelley Nass and Maryellen Mattingly) for producing the AAV vectors used in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Sullivan.

Ethics declarations

Conflict of interest

The authors are paid employees of Sanofi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, J.A., Stanek, L., Lukason, M. et al. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther 25, 205–219 (2018). https://doi.org/10.1038/s41434-018-0017-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0017-8

This article is cited by

Search

Quick links