Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep phenotypic characterization of the retinal dystrophy in patients with RNU4ATAC-associated Roifman syndrome

Abstract

Purpose

To characterize the retinal phenotype in RNU4ATAC-associated Roifman syndrome.

Methods

Ten patients (including 8 males) with molecularly confirmed Roifman syndrome underwent detailed ophthalmologic evaluation including fundus imaging, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography (SD-OCT), and electroretinography (ERG). Six patients had follow-up eye exams. All patients also underwent comprehensive examination for features of extra-retinal Roifman syndrome.

Results

All patients had biallelic RNU4ATAC variants. Nyctalopia was common (7/10). Visual acuity at presentation ranged from 20/20 to 20/200 (Age Range: 5–41 years). Retinal exam revealed features of generalized retinopathy with mid-peripheral pigment epithelial changes. A para or peri-foveal ring of hyper-autofluorescence was the commonest FAF abnormality noted (6/8). The SD-OCT demonstrated relative preservation of the foveal ellipsoid zone in six cases; associated features included cystoid changes (5/10) and posterior staphyloma (3/10). The ERG was abnormal in all patients; nine showed generalized rod-cone dystrophy, whilst one patient with sectoral retinal involvement only had isolated rod dystrophy (20 years old). On follow-up examination (Mean duration: 8.16 years), progressive loss of visual acuity (2/6), mid-peripheral retinal atrophy (3/6) or shortening of ellipsoid zone width (1/6) were observed.

Conclusion

This study has characterized the retinal phenotype in RNU4ATAC-associated Roifman syndrome. Retinal involvement is universal, early-onset, and overall, the retinal and FAF features are consistent with rod-cone degeneration that is slowly progressive over time. The sub-foveal retinal ultrastructure is relatively preserved in majority of patients. Phenotypic variability independent of age exists, and more study of allelic- and sex-based determinants of disease severity are necessary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Retinal imaging of Cases 1–5.
Fig. 2: Detailed retinal characteristics of Cases 5-10.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published paper. Further queries can be directed to the corresponding author.

References

  1. Roifman CM. Antibody deficiency, growth retardation, spondyloepiphyseal dysplasia and retinal dystrophy: a novel syndrome. Clin Genet. 1999;55:103–9.

    Article  CAS  PubMed  Google Scholar 

  2. Merico D, Roifman M, Braunschweig U, Yuen RK, Alexandrova R, Bates A, et al. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing. Nat Commun. 2015;6:8718.

    Article  CAS  PubMed  Google Scholar 

  3. Dinur Schejter Y, Ovadia A, Alexandrova R, Thiruvahindrapuram B, Pereira SL, Manson DE, et al. A homozygous mutation in the stem II domain of RNU4ATAC causes typical Roifman syndrome. NPJ Genom Med. 2017;2:23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich RC, et al. Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science 2011;332:238–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abdel-Salam GM, Miyake N, Eid MM, Abdel-Hamid MS, Hassan NA, Eid OM, et al. A homozygous mutation in RNU4ATAC as a cause of microcephalic osteodysplastic primordial dwarfism type I (MOPD I) with associated pigmentary disorder. Am J Med Genet A. 2011;155A:2885–96.

    Article  PubMed  Google Scholar 

  6. Robertson SP, Rodda C, Bankier A. Hypogonadotrophic hypogonadism in Roifman syndrome. Clin Genet. 2000;57:435–8.

    Article  CAS  PubMed  Google Scholar 

  7. Mandel K, Grunebaum E, Benson L. Noncompaction of the myocardium associated with Roifman syndrome. Cardiol Young-. 2001;11:240–3.

    Article  CAS  PubMed  Google Scholar 

  8. de Vries PJ, McCartney DL, McCartney E, Woolf D, Wozencroft D. The cognitive and behavioural phenotype of Roifman syndrome. J Intellect Disabil Res. 2006;50:690–6.

    Article  PubMed  Google Scholar 

  9. Gray PE, Sillence D, Kakakios A. Is Roifman syndrome an X-linked ciliopathy with humoral immunodeficiency? Evidence from 2 new cases. Int J Immunogenet. 2011;38:501–5.

    Article  CAS  PubMed  Google Scholar 

  10. Fairchild HR, Fairchild G, Tierney KM, McCartney DL, Cross JJ, de Vries PJ. Partial agenesis of the corpus callosum, hippocampal atrophy, and stable intellectual disability associated with Roifman syndrome. Am J Med Genet A. 2011;155A:2560–5.

    Article  PubMed  Google Scholar 

  11. Bogaert DJ, Dullaers M, Kuehn HS, Leroy BP, Niemela JE, De Wilde H, et al. Early-onset primary antibody deficiency resembling common variable immunodeficiency challenges the diagnosis of Wiedeman-Steiner and Roifman syndromes. Sci Rep. 2017;7:3702.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, et al. Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. J Allergy Clin Immunol. 2018;142:630–46.

    Article  CAS  PubMed  Google Scholar 

  13. Hallermayr A, Graf J, Koehler U, Laner A, Schonfeld B, Benet-Pages A, et al. Extending the critical regions for mutations in the non-coding gene RNU4ATAC in another patient with Roifman Syndrome. Clin Case Rep. 2018;6:2224–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clifford D, Moloney F, Leahy TR, Murray DM. Roifman syndrome: a description of further immunological and radiological features. BMJ Case Rep. 2022;15:e249109.

    Article  PubMed  Google Scholar 

  15. Chandrakumar M, Colpa L, Reginald YA, Goltz HC, Wong AM. Measuring contrast sensitivity using the M&S Smart System II versus the Pelli-Robson chart. Ophthalmology 2013;120:2160–1.

    Article  PubMed  Google Scholar 

  16. Robson AG, Frishman LJ, Grigg J, Hamilton R, Jeffrey BG, Kondo M, et al. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol. 2022;144:165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126:1–7.

    Article  PubMed  Google Scholar 

  18. Robson AG, Egan C, Holder GE, Bird AC, Fitzke FW. Comparing rod and cone function with fundus autofluorescence images in retinitis pigmentosa. Adv Exp Med Biol. 2003;533:41–7.

    Article  PubMed  Google Scholar 

  19. Robson AG, Michaelides M, Saihan Z, Bird AC, Webster AR, Moore AT, et al. Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update. Doc Ophthalmol. 2008;116:79–89.

    Article  PubMed  Google Scholar 

  20. Robson AG, Saihan Z, Jenkins SA, Fitzke FW, Bird AC, Webster AR, et al. Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol. 2006;90:472–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robson AG, El-Amir A, Bailey C, Egan CA, Fitzke FW, Webster AR, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Investig Ophthalmol Vis Sci. 2003;44:3544–50.

    Article  Google Scholar 

  22. Scholl HP, Chong NH, Robson AG, Holder GE, Moore AT, Bird AC. Fundus autofluorescence in patients with leber congenital amaurosis. Investig Ophthalmol Vis Sci. 2004;45:2747–52.

    Article  Google Scholar 

  23. Tsang SH, Vaclavik V, Bird AC, Robson AG, Holder GE. Novel phenotypic and genotypic findings in X-linked retinoschisis. Arch Ophthalmol. 2007;125:259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robson AG, Michaelides M, Luong VA, Holder GE, Bird AC, Webster AR, et al. Functional correlates of fundus autofluorescence abnormalities in patients with RPGR or RIMS1 mutations causing cone or cone rod dystrophy. Br J Ophthalmol. 2008;92:95–102.

    Article  CAS  PubMed  Google Scholar 

  25. Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, et al. Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology 2005;112:1442–7.

    Article  PubMed  Google Scholar 

  26. Downes SM, Payne AM, Kelsell RE, Fitzke FW, Holder GE, Hunt DM, et al. Autosomal dominant cone-rod dystrophy with mutations in the guanylate cyclase 2D gene encoding retinal guanylate cyclase-1. Arch Ophthalmol. 2001;119:1667–73.

    Article  CAS  PubMed  Google Scholar 

  27. Abdel-Salam GM, Abdel-Hamid MS, Hassan NA, Issa MY, Effat L, Ismail S, et al. Further delineation of the clinical spectrum in RNU4ATAC related microcephalic osteodysplastic primordial dwarfism type I. Am J Med Genet A. 2013;161A:1875–81.

    Article  PubMed  Google Scholar 

  28. Abdel-Salam GM, Abdel-Hamid MS, Issa M, Magdy A, El-Kotoury A, Amr K. Expanding the phenotypic and mutational spectrum in microcephalic osteodysplastic primordial dwarfism type I. Am J Med Genet A. 2012;158A:1455–61.

    Article  PubMed  Google Scholar 

  29. Nussenzweig A, Chen C, da Costa Soares V, Sanchez M, Sokol K, Nussenzweig MC, et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 1996;382:551–5.

    Article  CAS  PubMed  Google Scholar 

  30. Karanjawala ZE, Hinton DR, Oh E, Hsieh CL, Lieber MR. Developmental retinal apoptosis in Ku86-/- mice. DNA Repair (Amst). 2003;2:1429–34.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu C, Bogue MA, Lim DS, Hasty P, Roth DB. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 1996;86:379–89.

    Article  CAS  PubMed  Google Scholar 

  32. Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel JL, et al. Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet. 2002;11:3351–9.

    Article  CAS  PubMed  Google Scholar 

  33. Karam A, Tebbe L, Weber C, Messaddeq N, Morle L, Kessler P, et al. A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington’s disease mice. Neurobiol Dis. 2015;80:15–28.

    Article  CAS  PubMed  Google Scholar 

  34. Chantret I, Dupre T, Delenda C, Bucher S, Dancourt J, Barnier A, et al. Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase. J Biol Chem. 2002;277:25815–22.

    Article  CAS  PubMed  Google Scholar 

  35. Zdebska E, Bader-Meunier B, Schischmanoff PO, Dupre T, Seta N, Tchernia G, et al. Abnormal glycosylation of red cell membrane band 3 in the congenital disorder of glycosylation Ig. Pediatr Res. 2003;54:224–9.

    Article  PubMed  Google Scholar 

  36. Kranz C, Basinger AA, Gucsavas-Calikoglu M, Sun L, Powell CM, Henderson FW, et al. Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early lethality. Am J Med Genet A. 2007;143A:1371–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients for their active participation in the study. We thank Leslie MacKeen and Cynthia VandenHoven, for their assistance with obtaining multi-modal imaging. EH is supported by the Henry Brent Chair in Innovative Pediatric Ophthalmology Research.

Funding

AV is supported by the Foundation Fighting Blindness, USA (CD-CL-0617-0727-HSC).

Author information

Authors and Affiliations

Authors

Contributions

CMR and AV designed the study concept. BGB, AM, AT (ATumber), JG, EH, CMR and AV collected data. BGB, AT (ATumber) and AV analyzed the data. BGB, AM, AT (ATayyib), AT (ATumber), LV, CMR and AV wrote the first draft of the paper. All authors contributed to the final draft of the paper and approved the contents.

Corresponding author

Correspondence to Ajoy Vincent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballios, B.G., Mandola, A., Tayyib, A. et al. Deep phenotypic characterization of the retinal dystrophy in patients with RNU4ATAC-associated Roifman syndrome. Eye 37, 3734–3742 (2023). https://doi.org/10.1038/s41433-023-02581-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02581-1

Search

Quick links