Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of tear exosomes in the spread of herpes simplex virus type 1 in recurrent herpes simplex keratitis

Abstract

Background

Herpes simplex keratitis (HSK) is the most common but serious infectious keratitis with high recurrence. It is predominantly caused by herpes simplex virus type 1 (HSV-1). The spread mechanism of HSV-1 in HSK is not entirely clear. Multiple publications indicate that exosomes participate in the intercellular communication process during viral infections. However, there is rare evidence that HSV-1 spreads in HSK by exosomal pathway. This study aims to investigate the relationship between the spread of HSV-1 and tear exosomes in recurrent HSK.

Methods

Tear fluids collected from total 59 participants were included in this study. Tear exosomes were isolated by ultracentrifugation, then identified by silver staining and western blot. The size was determined by dynamic light scattering (DLS). The viral biomarkers were identified by western blot. The cellular uptake of exosomes was studied using labelled exosomes.

Results

Tear exosomes were indeed enriched in tear fluids. Collected exosomes own normal diameters consistent with related reports. The exosomal biomarkers existed in tear exosomes. Labelled exosomes were successfully taken up by human corneal epithelial cells (HCEC) in large numbers in a short time. After cellular uptake, HSK biomarkers were detectable by western blot in infected cells.

Conclusions

Tear exosomes should be the latent sites of HSV-1 in recurrent HSK and might be involved in the spread of HSV-1. Besides, this study verifies HSV-1 genes can be indeed transferred between cells by exosomal pathway, providing new inspiration for the clinical intervention and treatment as well as the drug discovery of recurrent HSK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of exosome biomarkers in precipitate and supernatant isolated from tear fluids.
Fig. 2: Hydrodynamic particle size of tear exosomes.
Fig. 3: Identification of tear exosome biomarkers for classical HSK.
Fig. 4: Confocal laser scanning micrograph of HCEC co-incubated with tear exosomes.
Fig. 5: Identification of HSK biomarkers in infected cells.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57:448–62.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thomas J, Liesegang M. Epidemiology of ocular herpes simplex. Arch Opthalmol. 1989;107:1160–5.

    Article  Google Scholar 

  3. Cabrera-Aguas M, Khoo P, George CRR, Lahra MM, Watson SL. Predisposing factors, microbiological features and outcomes of patients with clinical presumed concomitant microbial and herpes simplex keratitis. Eye 2022;36:86–94.

    Article  PubMed  Google Scholar 

  4. Kaye S, Choudhary A. Herpes simplex keratitis. Prog Retin Eye Res. 2006;25:355–80.

    Article  PubMed  Google Scholar 

  5. Morishige N, Jester JV, Naito J, Osorio N, Wahlert A, Jones C, et al. Herpes simplex virus type 1 ICP0 localizes in the stromal layer of infected rabbit corneas and resides predominantly in the cytoplasm and/or perinuclear region of rabbit keratocytes. J Gen Virol. 2006;87:2817–25.

    Article  CAS  PubMed  Google Scholar 

  6. Sibley D, Larkin DFP. Update on Herpes simplex keratitis management. Eye 2020;34:2219–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li L, Li Y, Li X, Xia Y, Wang E, Gong D, et al. HSV-1 infection and pathogenesis in the tree shrew eye following corneal inoculation. J Neurovirol. 2020;26:391–403.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Zhi S, Liang P, Zheng Q, Liu M, Zhao Q, et al. Single AAV-Mediated CRISPR-SaCas9 Inhibits HSV-1 Replication by Editing ICP4 in Trigeminal Ganglion Neurons. Mol Ther Methods Clin Dev. 2020;18:33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karasneh GA, Shukla D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J. 2011;8:481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bello-Morales R, Praena B, de la Nuez C, Rejas MT, Guerra M, Galan-Ganga M, et al. Role of microvesicles in the spread of herpes simplex virus 1 in oligodendrocytic cells. J Virol. 2018;92:e00088–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knipe DM, Raja P, Lee JS. Clues to mechanisms of herpesviral latent infection and potential cures. PNAS 2015;112:11993–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson AC, Mohr I. A cultured affair: HSV latency and reactivation in neurons. Trends Microbiol. 2012;20:604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Polcicova K, Biswas PS, Banerjee K, Wisner TW, Rouse BT, Johnson DC. Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea. PNAS 2005;102:11462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dua H. Herpes simplex virus in the human cornea. Br J Ophthalmol. 2000;84:559–61.

    Article  Google Scholar 

  15. Anderson MR, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurotherapeutics 2016;13:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nomura S, Taniura T, Ito T. Extracellular vesicle-related thrombosis in viral infection. Int J Gen Med. 2020;13:559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turner DL, Korneev DV, Purdy JG, de Marco A, Mathias RA. The host exosome pathway underpins biogenesis of the human cytomegalovirus virion. Elife 2020;9:e58288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patters BJ, Kumar S. The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology 2018;15:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sadeghipour S, Mathias RA. Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol. 2017;67:91–100.

    Article  CAS  PubMed  Google Scholar 

  20. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015;523:177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aqrawi LA, Galtung HK, Vestad B, Ovstebo R, Thiede B, Rusthen S, et al. Identification of potential saliva and tear biomarkers in primary Sjogren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res Ther. 2017;19:14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu S, Huang H, Liu D, Wen S, Shen L, Lin Q. Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioact Mater. 2022;15:469–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li SP, Lin ZX, Jiang XY, Yu XY. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharm Sin. 2018;39:542–51.

    Article  CAS  Google Scholar 

  27. He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics 2018;8:237–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012;44:2060–4.

    Article  CAS  PubMed  Google Scholar 

  29. Jarmalavičiūtė A, Pivoriūnas A. Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharm Res. 2016;113:816–22.

    Article  Google Scholar 

  30. Borowiec BM, Angelova Volponi A, Mozdziak P, Kempisty B, Dyszkiewicz-Konwinska M. Small extracellular vesicles and COVID19-using the “trojan horse” to tackle the giant. Cells 2021;10:3383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bello-Morales R, Ripa I, Lopez-Guerrero JA. Extracellular vesicles in viral spread and antiviral response. Viruses 2020;12:623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dreux M, Garaigorta U, Boyd B, Decembre E, Chung J, Whitten-Bauer C, et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe. 2012;12:558–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalamvoki M, Deschamps T. Extracellular vesicles during herpes simplex virus type 1 infection: an inquire. Virol J. 2016;13:63.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 2015;16:24–43.

    Article  CAS  PubMed  Google Scholar 

  35. Roucourt B, Meeussen S, Bao J, Zimmermann P, David G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25:412–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inubushi S, Kawaguchi H, Mizumoto S, Kunihisa T, Baba M, Kitayama Y, et al. Oncogenic miRNAs Identified in Tear Exosomes From Metastatic Breast Cancer Patients. Anticancer Res. 2020;40:3091–6.

    Article  PubMed  Google Scholar 

  37. Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Science & Technology Program of Wenzhou (Y20190169, Y2020204), Department of Health of Zhejiang Province (2022KY216).

Author information

Authors and Affiliations

Authors

Contributions

HH contributed to experiments design and performance, data analysis and interpretation, and the original draft writing; SL and XZ contributed to sample collection; PZ and QJ contributed to sample preparation; HM contributed to participant recruitments and sample collection; QL contributed to resources, supervision, writing reviewing and editing.

Corresponding authors

Correspondence to Huixiang Ma or Quankui Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Liu, S., Zhao, X. et al. Role of tear exosomes in the spread of herpes simplex virus type 1 in recurrent herpes simplex keratitis. Eye 37, 3180–3185 (2023). https://doi.org/10.1038/s41433-023-02473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02473-4

This article is cited by

Search

Quick links