Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical trials targeting the gut-microbiome to effect ocular health: a systematic review

Abstract

Clinical trials targeting the gut microbiome to mitigate ocular disease are now on the horizon. A review of clinical data thus far is essential to determine future directions in this novel promising field. This review examines recent clinical trials that support the plausibility of a gut-eye axis, and may form the basis of novel clinical interventions. PubMed was queried for English language clinical studies examining the relationships between gut microbiota and ocular pathology. 25 studies were extracted from 828 candidate publications, which suggest that gut imbalance is associated with ocular pathology. Of these, only four interventional studies exist which suggest probiotic supplementation or fecal microbiota transplant can reduce symptoms of chalazion or uveitis. The gut-eye axis appears to hold clinical relevance, but current data is limited in sample size and design. Further investigation via longitudinal clinical trials may be warranted.

摘要

靶向调节肠道微生物从而减轻眼部疾病的临床试验目前即将拉开帷幕。对迄今为止的临床数据进行回顾, 在确定这一具有前途的新领域的未来发展方向上至关重要。本文综述了最新的支持肠-眼轴的合理性临床试验, 这些临床实验的结果可能成为新的临床干预策略的基础。本文使用PubMed查询了关于肠道菌群与眼部疾病相关性的英文临床研究。从828篇候选文献中筛选了25篇研究, 这些研究表明肠道失衡与眼部疾病的病理相关。其中, 只有4项介入性研究表明, 补充益生菌或移植粪便微生物群可以减轻霰粒肿或葡萄膜炎的症状。肠-眼轴体现了临床相关性, 但目前的数据在样本量和设计方面均具有局限性。需要通过纵向临床试验进行进一步的验证。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA diagram of study review and selection process.

Similar content being viewed by others

References

  1. Napolitano P, Filippelli M, Davinelli S, Bartollino S, dell’Omo R, Costagliola C. Influence of gut microbiota on eye diseases: an overview. Ann Med. 2021;53:750–61. https://doi.org/10.1080/07853890.2021.1925150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216:20–40. https://doi.org/10.1084/jem.20180448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van der Meulen TA, Harmsen H, Bootsma H, Spijkervet F, Kroese F, Vissink A. The microbiome-systemic diseases connection. Oral Dis. 2016;22:719–34. https://doi.org/10.1111/odi.12472

    Article  PubMed  Google Scholar 

  4. Gut microbiome in retina health: the crucial role of the gut-retina axis. Front Microbiol. Accessed 7 Mar 2022. https://www.frontiersin.org/articles/10.3389/fmicb.2021.726792/full

  5. Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and ocular diseases. Front Cell Infect Microbiol. 2021;11. Accessed 7 Mar 2022. https://www.frontiersin.org/article/10.3389/fcimb.2021.759333

  6. Radjabzadeh D, Uitterlinden AG, Kraaij R. Microbiome measurement: possibilities and pitfalls. Best Pr Res Clin Gastroenterol. 2017;31:619–23. https://doi.org/10.1016/j.bpg.2017.10.008

    Article  CAS  Google Scholar 

  7. Allaband C, McDonald D, Vázquez-Baeza Y, et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol Clin Pr J Am Gastroenterol Assoc. 2019;17:218–30. https://doi.org/10.1016/j.cgh.2018.09.017

    Article  Google Scholar 

  8. Nakamura YK, Metea C, Karstens L, et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest Ophthalmol Vis Sci. 2016;57:3747–58. https://doi.org/10.1167/iovs.16-19733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity. 2015;43:343–53. https://doi.org/10.1016/j.immuni.2015.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rowan S, Jiang S, Korem T, et al. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci USA. 2017;114:E4472–81. https://doi.org/10.1073/pnas.1702302114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018;9:3209. https://doi.org/10.1038/s41467-018-05681-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duan Y, Prasad R, Feng D, et al. Bone marrow-derived cells restore functional integrity of the gut epithelial and vascular barriers in a model of diabetes and ACE2 deficiency. Circ Res. 2019;125:969–88. https://doi.org/10.1161/CIRCRESAHA.119.315743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes. 2018;67:1867–79. https://doi.org/10.2337/db18-0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verma A, Xu K, Du T, et al. Expression of human ACE2 in Lactobacillus and beneficial effects in diabetic retinopathy in mice. Mol Ther Methods Clin Dev. 2019;14:161–70. https://doi.org/10.1016/j.omtm.2019.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oxford Centre for Evidence-Based Medicine: Levels of Evidence (March 2009)—Centre for Evidence-Based Medicine (CEBM), University of Oxford. Accessed 16 Jun 2022. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009

  16. Costagliola C. Effect of probiotics on the occurrence of blepharitis in adults and children. clinicaltrials.gov; 2021. Accessed 16 Mar 2022. https://clinicaltrials.gov/ct2/show/NCT04742855

  17. Lebeer S. Study of the Probiotic Potential of a Lacticaseibacillus Strain in the Upper Airways in Patients With Allergic Rhinoconjunctivitis After Administration in a Chewable. clinicaltrials.gov; 2021. Accessed 16 Mar 2022. https://clinicaltrials.gov/ct2/show/NCT04898686

  18. Das T, Jayasudha R, Chakravarthy S, et al. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci Rep. 2021;11:2738. https://doi.org/10.1038/s41598-021-82538-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye P, Zhang X, Xu Y, Xu J, Song X, Yao K. Alterations of the gut microbiome and metabolome in patients with proliferative diabetic retinopathy. Front Microbiol. 2021;12:667632. https://www.frontiersin.org/article/10.3389/fmicb.2021.667632 Accessed 8 Mar 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang Y, Wang Z, Ma H, et al. Dysbiosis and implication of the gut microbiota in diabetic retinopathy. Front Cell Infect Microbiol. 2021;11:646348. https://www.frontiersin.org/article/10.3389/fcimb.2021.646348 Accessed March 8, 2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jayasudha R, Das T, Kalyana Chakravarthy S, et al. Gut mycobiomes are altered in people with type 2 diabetes mellitus and diabetic retinopathy. PloS One. 2020;15:e0243077. https://doi.org/10.1371/journal.pone.0243077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh H, Miyamoto S, Darshi M, et al. Gut microbial changes in diabetic db/db mice and recovery of microbial diversity upon pirfenidone treatment. Microorganisms. 2020;8:1347. https://doi.org/10.3390/microorganisms8091347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017;7:40826. https://doi.org/10.1038/srep40826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conley MN, Wong CP, Duyck KM, Hord N, Ho E, Sharpton TJ. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ. 2016;4:e1854. https://doi.org/10.7717/peerj.1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McPherson ZE, Sørensen HT, Horváth-Puhó E, et al. Irritable bowel syndrome and risk of glaucoma: an analysis of two independent population-based cohort studies. U Eur Gastroenterol J. 2021;9:1057–65. https://doi.org/10.1002/ueg2.12136

    Article  Google Scholar 

  26. Gong H, Zhang S, Li Q, et al. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp Eye Res. 2020;191:107921. https://doi.org/10.1016/j.exer.2020.107921

    Article  CAS  PubMed  Google Scholar 

  27. Berkowitz E, Kopelman Y, Kadosh D, et al. “More guts than brains?”—The role of gut microbiota in idiopathic intracranial hypertension. J Neuroophthalmol. 2022;42:e70. https://doi.org/10.1097/WNO.0000000000001330

    Article  PubMed  Google Scholar 

  28. Bolte LA, Vich Vila A, Imhann F, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut. 2021;70:1287–98. https://doi.org/10.1136/gutjnl-2020-322670

    Article  CAS  PubMed  Google Scholar 

  29. Lobionda S, Sittipo P, Kwon HY, Lee YK. The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms. 2019;7:271. https://doi.org/10.3390/microorganisms7080271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hakansson A, Molin G. Gut microbiota and inflammation. Nutrients. 2011;3:637–82. https://doi.org/10.3390/nu3060637

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kalyana Chakravarthy S, Jayasudha R, Sai Prashanthi G, et al. Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol. 2018;58:457–69. https://doi.org/10.1007/s12088-018-0746-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang X, Ye Z, Cao Q, et al. Gut microbiota composition and fecal metabolic phenotype in patients with acute anterior uveitis. Investig Ophthalmol Vis Sci. 2018;59:1523–31. https://doi.org/10.1167/iovs.17-22677

    Article  CAS  Google Scholar 

  33. Jayasudha R, Kalyana Chakravarthy S, Sai Prashanthi G, Sharma S, Tyagi M, Shivaji S. Implicating dysbiosis of the gut fungal microbiome in uveitis, an inflammatory disease of the eye. Investig Ophthalmol Vis Sci. 2019;60:1384–93. https://doi.org/10.1167/iovs.18-26426

    Article  CAS  Google Scholar 

  34. Chakravarthy SK, Jayasudha R, Ranjith K, et al. Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLOS One. 2018;13:e0199640. https://doi.org/10.1371/journal.pone.0199640

    Article  CAS  Google Scholar 

  35. Jayasudha R, Chakravarthy SK, Prashanthi GS, et al. Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye. J Biosci. 2018;43:835–56.

    Article  CAS  PubMed  Google Scholar 

  36. Kothavade RJ, Kura MM, Valand AG, Panthaki MH. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol. 2010;59:873–80. https://doi.org/10.1099/jmm.0.013227-0

    Article  CAS  PubMed  Google Scholar 

  37. Tecer D, Gogus F, Kalkanci A, et al. Succinivibrionaceae is dominant family in fecal microbiota of Behçet’s Syndrome patients with uveitis. PloS One. 2020;15:e0241691. https://doi.org/10.1371/journal.pone.0241691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yasar Bilge NS, Pérez Brocal V, Kasifoglu T, et al. Intestinal microbiota composition of patients with Behçet’s disease: differences between eye, mucocutaneous and vascular involvement. The Rheuma-BIOTA study. Clin Exp Rheumatol. 2020;38(Suppl 127):60–68.

    Google Scholar 

  39. Roncal C, Martínez-Aguilar E, Orbe J, et al. Trimethylamine-N-Oxide (TMAO) predicts cardiovascular mortality in peripheral artery disease. Sci Rep. 2019;9:15580. https://doi.org/10.1038/s41598-019-52082-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–24. https://doi.org/10.1016/j.cell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24:1407–17. https://doi.org/10.1038/s41591-018-0128-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zysset-Burri DC, Keller I, Berger LE, et al. Retinal artery occlusion is associated with compositional and functional shifts in the gut microbiome and altered trimethylamine-N-oxide levels. Sci Rep. 2019;9:15303. https://doi.org/10.1038/s41598-019-51698-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Griffin LE, Djuric Z, Angiletta CJ, et al. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 2019;10:2138–47. https://doi.org/10.1039/c9fo00333a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watane A, Cavuoto KM, Rojas M, et al. Fecal microbial transplant in individuals with immune-mediated dry eye. Am J Ophthalmol. 2022;233:90–100. https://doi.org/10.1016/j.ajo.2021.06.022

    Article  CAS  PubMed  Google Scholar 

  45. Filippelli M, dell’Omo R, Amoruso A, et al. Effectiveness of oral probiotics supplementation in the treatment of adult small chalazion. Int J Ophthalmol. 2022;15:40–44. https://doi.org/10.18240/ijo.2022.01.06

    Article  PubMed  PubMed Central  Google Scholar 

  46. Filippelli M, dell’Omo R, Amoruso A, et al. Intestinal microbiome: a new target for chalaziosis treatment in children? Eur J Pediatr. 2021;180:1293–8. https://doi.org/10.1007/s00431-020-03880-5

    Article  CAS  PubMed  Google Scholar 

  47. Napolitano P, Filippelli M, D’andrea L, Carosielli M, dell’Omo R, Costagliola C. Probiotic supplementation improved acute anterior uveitis of 3-year duration: a case report. Am J Case Rep. 2021;22:e931321. https://doi.org/10.12659/AJCR.931321

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wilkins LJ, Monga M, Miller AW. Defining dysbiosis for a cluster of chronic diseases. Sci Rep. 2019;9:12918. https://doi.org/10.1038/s41598-019-49452-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wastyk HC, Fragiadakis GK, Perelman D, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184:4137.e14. https://doi.org/10.1016/j.cell.2021.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rao SSC, Rehman A, Yu S, Andino NMde. Brain fogginess, gas and bloating: a link between SIBO, probiotics and metabolic acidosis. Clin Transl Gastroenterol. 2018;9:162. https://doi.org/10.1038/s41424-018-0030-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–22. https://doi.org/10.1016/j.psyneuen.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  52. Burton JP, Drummond BK, Chilcott CN, et al. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol. 2013;62:875–84. https://doi.org/10.1099/jmm.0.056663-0

    Article  PubMed  Google Scholar 

  53. Kijmanawat A, Panburana P, Reutrakul S, Tangshewinsirikul C. Effects of probiotic supplements on insulin resistance in gestational diabetes mellitus: a double-blind randomized controlled trial. J Diabetes Investig. 2019;10:163–70. https://doi.org/10.1111/jdi.12863

    Article  CAS  PubMed  Google Scholar 

  54. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent clostridium difficile. N Engl J Med. 2013;368:407–15. https://doi.org/10.1056/NEJMoa1205037

    Article  CAS  PubMed  Google Scholar 

  55. Rokkas T, Gisbert JP, Gasbarrini A, et al. A network meta-analysis of randomized controlled trials exploring the role of fecal microbiota transplantation in recurrent Clostridium difficile infection. U Eur Gastroenterol J. 2019;7:1051–63. https://doi.org/10.1177/2050640619854587

    Article  Google Scholar 

  56. Holvoet T, Joossens M, Vázquez-Castellanos JF, et al. Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and long-term results from a placebo-controlled randomized trial. Gastroenterology. 2021;160:145.e8. https://doi.org/10.1053/j.gastro.2020.07.013

    Article  CAS  PubMed  Google Scholar 

  57. Allegretti JR, Kassam Z, Hurtado J, et al. Impact of fecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity. Hormones. 2021;20:209–11. https://doi.org/10.1007/s42000-020-00265-z

    Article  PubMed  Google Scholar 

  58. Cully M. Microbiome therapeutics go small molecule. Nat Rev Drug Discov. 2019;18:569–72. https://doi.org/10.1038/d41573-019-00122-8

    Article  CAS  PubMed  Google Scholar 

  59. Moubayed NM, Bhat RS, Al Farraj D, et al. Screening and identification of gut anaerobes (Bacteroidetes) from human diabetic stool samples with and without retinopathy in comparison to control subjects. Microb Pathog. 2019;129:88–92. https://doi.org/10.1016/j.micpath.2019.01.025

  60. Skondra D, Rodriguez SH, Sharma A, et al. The early gut microbiome could protect against severe retinopathy of prematurity. J AAPOS. 2020;24:236–8. https://doi.org/10.1016/j.jaapos.2020.03.010

  61. Khan R, Sharma A, Ravikumar R, et al. Association Between Gut Microbial Abundance and Sight-Threatening Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2021;62:19. https://doi.org/10.1167/iovs.62.7.19

  62. Moon J, Choi SH, Yoon CH, et al. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS One. 2020;15:e0229029. https://doi.org/10.1371/journal.pone.0229029

  63. Mendez R, Watane A, Farhangi M, et al. Gut microbial dysbiosis in individuals with Sjögren’s syndrome. Microbial Cell Factories. 2020;19:90. https://doi.org/10.1186/s12934-020-01348-7

Download references

Author information

Authors and Affiliations

Authors

Contributions

MWR, JCM, and RPS were involved in project conception and designing study. MWR, BLK, and AKW were involved in data collection and table generation. All authors were involved in manuscript writing and editing.

Corresponding author

Correspondence to Rishi P. Singh.

Ethics declarations

Competing interests

RPS reports personal fees from Genentech/Roche, personal fees from Alcon/Novartis, grants from Apellis and Graybug, personal fees from Zeiss, personal fees from Bausch + Lomb, personal fees from Regeneron Pharmaceuticals, Inc. All other authors report no disclosures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, M.W., Muste, J.C., Kuo, B.L. et al. Clinical trials targeting the gut-microbiome to effect ocular health: a systematic review. Eye 37, 2877–2885 (2023). https://doi.org/10.1038/s41433-023-02462-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02462-7

Search

Quick links