Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrigenomics and molecular nutrition

The interaction of cholesteryl ester transfer protein gene variations and diet on changes in serum lipid profiles

Abstract

Background/Objectives

Gene–diet interactions may have an important role in the disparities between the lipid responses of individuals to diet. This study aimed to investigate whether polymorphisms (rs5882 and rs3764261) in the cholesteryl ester transfer protein (CETP) gene modify the association of diet with changes in serum lipid profiles.

Subjects/Methods

A total of 4700 individuals aged ≥18 years were selected from among participants of the Tehran Lipid and Glucose Study. After 3.6 years of follow-up, changes in serum lipid profiles were evaluated. Usual dietary intake was assessed using a validated food frequency questionnaire. DNA samples were genotyped with HumanOmniExpress-24-v1-0 bead chips (containing 649,932 SNP loci).

Results

No significant interaction was found between CETP polymorphisms and dietary patterns in changing lipid profiles. Mean changes of total cholesterol (TC) decreased in higher quartiles of fish intake in A allele carriers (Q1:8.02, Q4:5.58, Ptrend = 0.01) compared to the CC genotype (Q1:3.65, Q4:8.93, Ptrend = 0.11) (Pi = 0.02). There are ascending trends of changes in triglyceride (TG) concentrations across quartiles of total fat, monounsaturated and saturated fat consumption in G allele carriers of rs5882 compared to the AA genotype. There was a declining trend for mean changes in TG concentrations across quartiles of carbohydrate intake in G allele carriers of rs5882 compared to the AA genotype (Pi = 0.01).

Conclusions

Our data demonstrated that minor allele carriers of rs5882 had a better TG value than AA homozygote individuals when consuming a low fat and high carbohydrate diet. Fish intake modifies the association of rs3764261with TC concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hosseini-Esfahani F, Mirmiran P, Daneshpour MS, Mehrabi Y, Hedayati M, Soheilian-Khorzoghi M, et al. Dietary patterns interact with APOA1/APOC3 polymorphisms to alter the risk of the metabolic syndrome: the Tehran Lipid and Glucose Study. Br J Nutr. 2015;113:644–53. https://doi.org/10.1017/S0007114514003687.

    Article  CAS  PubMed  Google Scholar 

  2. Mirmiran P, Esfandiar Z, Hosseini-Esfahani F, Koochakpoor G, Daneshpour MS, Sedaghati-Khayat B, et al. Genetic variations of cholesteryl ester transfer protein and diet interactions in relation to lipid profiles and coronary heart disease: a systematic review. Nutr Metab (Lond). 2017;14:77.

    Article  Google Scholar 

  3. Meroufel DN, Mediene-Benchekor S, Lardjam-Hetraf SA, Ouhaibi-Djellouli H, Boulenouar H, Hamani-Medjaoui I, et al. Associations of common SNPs in the SORT1, GCKR, LPL, APOA1, CETP, LDLR, APOE genes with lipid trait levels in an Algerian population sample. Int J Clin Exp Pathol. 2015;8:7358–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ordovas JM. Genetic interactions with diet influence the risk of cardiovascular disease. Am J Clin Nutr. 2006;83:443S–6S.

    Article  CAS  PubMed  Google Scholar 

  5. Durrington P. Dyslipidaemia. Lancet. 2003;362:717–31. https://doi.org/10.1016/s0140-6736(03)14234-1.

    Article  CAS  PubMed  Google Scholar 

  6. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83. https://doi.org/10.1038/ng.2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mackay DS, Eck PK, Rideout TC, Baer DJ, Jones PJ. Cholesterol ester transfer protein polymorphism rs5882 is associated with triglyceride-lowering in response to plant sterol consumption. Appl Physiol Nutr Metab. 2015;40:846–9. https://doi.org/10.1139/apnm-2015-0039.

    Article  CAS  PubMed  Google Scholar 

  8. Rudkowska I, Dewailly E, Hegele RA, Boiteau V, Dube-Linteau A, Abdous B, et al. Gene-diet interactions on plasma lipid levels in the Inuit population. Br J Nutr. 2013;109:953–61. https://doi.org/10.1017/s0007114512002231.

    Article  CAS  PubMed  Google Scholar 

  9. Darabi M, Abolfathi A, Noori M, Kazemi A, Ostadrahimi A, Rahimipour A, et al. Cholesteryl ester transfer protein I405V polymorphism influences apolipoprotein AI response to a change in dietary fatty acid composition. Horm Metab Res. 2009;41:554–8.

    Article  CAS  PubMed  Google Scholar 

  10. Anagnostopoulou KK, Kolovou GD, Kostakou PM, Mihas C, Hatzigeorgiou G, Marvaki C, et al. Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia. Lipids Health Dis. 2009;8:24.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Terán-García M, Després J-P, Tremblay A, Bouchard C. Effects of cholesterol ester transfer protein (CETP) gene on adiposity in response to long-term overfeeding. Atherosclerosis. 2008;196:455–60.

    Article  PubMed  Google Scholar 

  12. Lottenberg AM, Nunes VS, Nakandakare ER, Neves M, Bernik M, Lagrost L, et al. The human cholesteryl ester transfer protein I405V polymorphism is associated with plasma cholesterol concentration and its reduction by dietary phytosterol esters. J Nutr. 2003;133:1800–5.

    Article  CAS  PubMed  Google Scholar 

  13. Lottenberg AM, Santos JE, Lagrost L, Nunes VS, Nakandakare ER, Neves M, et al. Plasma cholesterol and CETP concentrations are lowered by dietary phytosterol ester but only the cholesterol variation related to the CETP 1405V polymorphism. Atheroscler Suppl. 2001;2:110 https://doi.org/10.1016/S1567-5688(01)80305-6.

    Article  Google Scholar 

  14. Friedlander Y, Leitersdorf E, Vecsler R, Funke H, Kark J. The contribution of candidate genes to the response of plasma lipids and lipoproteins to dietary challenge. Atherosclerosis. 2000;152:239–48. https://doi.org/10.1016/S0021-9150(99)00474-8.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, Delgado-Lista J, Marin C, Leon-Acuna A et al. Beneficial effect of CETP gene polymorphism in combination with a Mediterranean diet influencing lipid metabolism in metabolic syndrome patients: CORDIOPREV study. Clin Nutr. 2016. https://doi.org/10.1016/j.clnu.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  16. Qi Q, Durst R, Schwarzfuchs D, Leitersdorf E, Shpitzen S, Li Y, et al. CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the POUNDS LOST and DIRECT randomized trials. J Lipid Res. 2015;56:713–21. https://doi.org/10.1194/jlr.P055715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Azizi F, Ghanbarian A, Momenan AA, Hadaegh F, Mirmiran P, Hedayati M, et al. Prevention of non-communicable disease in a population in nutrition transition: Tehran Lipid and Glucose Study phase II. Trials. 2009;10:1745–6215.

    Article  Google Scholar 

  18. Mirmiran P, Hosseini Esfahani F, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran Lipid and Glucose Study. Public Health Nutr. 2010;13:654–62. https://doi.org/10.1017/S1368980009991698.

    Article  PubMed  Google Scholar 

  19. Hosseini-Esfahani F, Djazaieri S-A, Mirmiran P, Mehrabi Y, Azizi F. Which food patterns are predictors of obesity in Tehranian adults? J Nutr Educ Behav. 2012;44:564–73.

    Article  PubMed  Google Scholar 

  20. Momenan AA, Delshad M, Sarbazi N, Rezaei Ghaleh N, Ghanbarian A, Azizi F. Reliability and validity of the Modifiable Activity Questionnaire (MAQ) in an Iranian urban adult population. Arch Iran Med. 2012;15:279–82. 012155/aim.007.

    PubMed  Google Scholar 

  21. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.

    Article  CAS  PubMed  Google Scholar 

  22. Kriska AM, Knowler WC, LaPorte RE, Drash AL, Wing RR, Blair SN, et al. Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care. 1990;13:401–11.

    Article  CAS  PubMed  Google Scholar 

  23. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  PubMed  Google Scholar 

  24. Daneshpour MS, Fallah MS. Ration Des a Genet Study Cardiometabolic Risk Factor: Protoc Tehran Cardiometabolic Genet Study (TCGS). 2017;6:e28 https://doi.org/10.2196/resprot.6050.

    Article  Google Scholar 

  25. Jayedi A, Shab-Bidar S, Eimeri S, Djafarian K. Fish consumption and risk of all-cause and cardiovascular mortality: a dose-response meta-analysis of prospective observational studies. Public Health Nutr. 2018;21:1297–306. https://doi.org/10.1017/s1368980017003834

    Article  PubMed  Google Scholar 

  26. Torris C, Smastuen MC, Molin M. Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients 2018;10. https://doi.org/10.3390/nu10070952.

    Article  PubMed Central  Google Scholar 

  27. Alhassan A, Young J, Lean MEJ, Lara J. Consumption of fish and vascular risk factors: A systematic review and meta-analysis of intervention studies. Atherosclerosis. 2017;266:87–94. https://doi.org/10.1016/j.atherosclerosis.2017.09.028.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299:2777–88. https://doi.org/10.1001/jama.299.23.2777.

    Article  CAS  PubMed  Google Scholar 

  29. Li TY, Zhang C, Asselbergs FW, Qi L, Rimm E, Hunter DJ, et al. Interaction between dietary fat intake and the cholesterol ester transfer protein TaqIB polymorphism in relation to HDL-cholesterol concentrations among US diabetic men. Am J Clin Nutr. 2007;86:1524–9.

    Article  CAS  PubMed  Google Scholar 

  30. Jansen S, Lopez-Miranda J, Castro P, Lopez-Segura F, Marin C, Ordovas JM, et al. Low-fat and high-monounsaturated fatty acid diets decrease plasma cholesterol ester transfer protein concentrations in young, healthy, normolipemic men. Am J Clin Nutr. 2000;72:36–41.

    Article  CAS  PubMed  Google Scholar 

  31. Schwab US, Maliranta HM, Sarkkinen ES, Savolainen MJ, Kesäniemi YA, Uusitupa MIJ. Different effects of palmitic and stearic acid-enriched diets on serum lipids and lipoproteins and plasma cholesteryl ester transfer protein activity in healthy young women. Metabolism. 1996;45:143–9. https://doi.org/10.1016/S0026-0495(96)90044-X.

    Article  CAS  PubMed  Google Scholar 

  32. Groener JE, van Ramshorst EM, Katan MB, Mensink RP, van Tol A. Diet-induced alteration in the activity of plasma lipid transfer protein in normolipidemic human subjects. Atherosclerosis. 1991;87:221–6.

    Article  CAS  PubMed  Google Scholar 

  33. Frances E, Carrasco P, Sorli JV, Ortega C, Portoles O, Rubio MM, et al. Impact of APOE, APOA5 and CETP polymorphism on plasma lipid concentrations and response to a mediterranean diet in the predimed study. Atheroscler Suppl. 2006;7:47 https://doi.org/10.1016/S1567-5688(06)80146-7.

    Article  Google Scholar 

  34. Asghari G, Rezazadeh A, Hosseini-Esfahani F, Mehrabi Y, Mirmiran P, Azizi F. Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran Lipid and Glucose Study. Br J Nutr. 2012;108:1109–17. https://doi.org/10.1017/S0007114511006313.

    Article  CAS  PubMed  Google Scholar 

  35. Dekker LH, Boer JM, Stricker MD, Busschers WB, Snijder MB, Nicolaou M, et al. Dietary patterns within a population are more reproducible than those of individuals. J Nutr. 2013;143:1728–35. https://doi.org/10.3945/jn.113.177477.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Ms. Niloofar Shiva and Dr. Forough Ghanbari for critical editing of the English grammar and syntax of the manuscript.

Author contributions

ZE, FHE and AG designed the study, analysed and interpreted the data, while also drafting the manuscript; MSD, PM and FA supervised the study, revised the manuscript for important intellectual content and final approval of the version for publication.

Funding

This study was supported by the RIES, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant No. 834).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parvin Mirmiran or Maryam S. Daneshpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Esfahani, F., Esfandiar, Z., Mirmiran, P. et al. The interaction of cholesteryl ester transfer protein gene variations and diet on changes in serum lipid profiles. Eur J Clin Nutr 73, 1291–1298 (2019). https://doi.org/10.1038/s41430-019-0397-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-019-0397-x

This article is cited by

Search

Quick links