Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actinomycetospora termitidis sp. nov., an insect-derived actinomycete isolated from termite (Odontotermes formosanus)

Abstract

Strain Odt1-22T, an insect-derived actinomycete was isolated from a termite (Odontotermes formosanus) that was collected from Chanthaburi province, Thailand. Strain Odt1-22T was aerobic, Gram-stain-positive, and produced bud-like spore chain on the substrate hypha. According to chemotaxonomic analysis, strain Odt1-22T contained meso-diaminopimelic acid in peptidoglycan and the whole-cell hydrolysates contained arabinose, galactose, glucose, and ribose. The major menaquinone was MK-8(H4). The diagnostic phospholipids were diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic analysis based on 16 S rRNA gene sequence revealed that strain Odt1-22T was identified to the genus Actinomycetospora and showed high similarity values with A. chiangmaiensis DSM 45062 T (99.24%), A. soli SF1T (99.24%) and A. corticicola 014-5 T (98.17%). The genomic size of strain Odt1-22T was 6.6 Mbp with 73.8% G + C content and 6355 coding sequences (CDSs). The genomic analysis, strain Odt1-22T and closely related species A. chiangmaiensis DSM 45062 T, A. soli SF1T and A. corticicola DSM 45772 T displayed the values of average nucleotide identity-blast (ANIb) at 83.7–84.1% and MUMmer (ANIm) at 86.6–87.0%. Moreover, the results of digital DNA-DNA hybridization values between strain Odt1-22T and related Actinomycetospora species were 45.8−50.5% that lower than the threshold value of commonly used to delineate separated species level. On the basis of phenotypic, chemotaxonomic, and genotypic data, strain Odt1-22T represented a novel species within the genus Actinomycetospora, for which the name Actinomycetospora termitidis sp. nov. is proposed. The type strain of the species is Odt1-22T (= TBRC 16192 T = NBRC 115965 T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang Y, Liu C, Zhang J, Shen Y, Li C, He H. et al. Actinomycetospora atypica sp. nov., a novel soil actinomycete and emended description of the genus Actinomycetospora. Antonie van Leeuwenhoek. 2014;105:891–7.

    Article  CAS  PubMed  Google Scholar 

  2. Embley TM, O’Donnell AG, Rostron J, Goodfellow M. Chemotaxonomy of wall type IV actinomycetes which lack mycolic acids. Microbiology. 1988;134:953–60.

    Article  CAS  Google Scholar 

  3. Jiang Y, Wiese J, Tang SK, Xu LH, Imhoff JF, Jiang CL. Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae. Int J Syst Evol Microbiol. 2008;58:408–413.

    Article  CAS  PubMed  Google Scholar 

  4. Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro, M. et al. Actinomycetospora iriomotensis sp. nov., a novel actinomycete isolated from a lichen sample. J Antibiot. 2011;64:289–92.

    Article  CAS  Google Scholar 

  5. Tamura T, Ishida Y, Hamada M, Otoguro M, Yamamura H, Hayakawa M. et al. Description of Actinomycetospora chibensis sp. nov., Actinomycetospora chlora sp. nov., Actinomycetospora cinnamomea sp. nov., Actinomycetospora corticicola sp. nov., Actinomycetospora lutea sp. nov., Actinomycetospora straminea sp. nov. and Actinomycetospora succinea sp. nov. and emended description of the genus Actinomycetospora. Int J Syst Evol Microbiol. 2011;61:1275–80.

    Article  PubMed  Google Scholar 

  6. Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M. et al. Actinomycetospora rishiriensis sp. nov., isolated from a lichen. Int J Syst Evol Microbiol. 2011;61:2621–2625.

    Article  CAS  PubMed  Google Scholar 

  7. He H, Zhang Y, Ma Z, Li C, Liu C, Zhou Y. et al. Actinomycetospora rhizophila sp. nov., an actinomycete isolated from rhizosphere soil of a peace lily (Spathi phyllum Kochii). Int J Syst Evol Microbiol. 2015;65:1520–4.

    Article  CAS  PubMed  Google Scholar 

  8. Sakdapetsiri C, Ngaemthao W, Suriyachadkun C, Duangmal K, Kitpreechavanich V. Actinomycetospora endophytica sp. nov., isolated from wild orchid (Podochilus microphyllus Lindl.) in Thailand. Int J Syst Evol Microbiol. 2018;68:3017–21.

    Article  CAS  PubMed  Google Scholar 

  9. Kaewkla C, Milton C, Franco M. Actinomycetospora callitridis sp. nov., an endophytic actinobacterium isolated from the surface-sterilised root of an Australian native pine tree. Antonie van Leeuwenhoek. 2019;112:331–7.

    Article  PubMed  Google Scholar 

  10. Chantavorakit T, Duangmal K. Actinomycetospora soli sp. nov., isolated from the rhizosphere soil of Averrhoa carambola L. Int J Syst Evol Microbiol. 2022;72:005277.

    Article  CAS  Google Scholar 

  11. Hanshew AS, McDonald BR, Díaz CD, Djiéto-Lordon C, Blatrix R, Currie CR. et al. Characterization of actinobacteria associated with three ant-plant mutualisms. Micro Ecol. 2015;69:192–203.

    Article  Google Scholar 

  12. Supong K, Anutrakunchai S, Thongkamngam T, Bunbamrung N, Pittayakhajonwut P, Tanasupawat S. et al. Investigation of biological activity and identification of culturable insect-derived Streptomyces strains from Cossus chlorates. Agr Nat Resour. 2023;57:271–280.

    Google Scholar 

  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–40.

    Article  Google Scholar 

  14. Kelly KL. Inter-society Color Council–National Bureau of standard color name charts illustrated with centroid colors. US Government Printing Office, Washington, DC, 1964.

  15. Arai T. Culture media for actinomycetes. Tokyo: The Society for Actinomycetes, Japan. 1975.

  16. Williams ST, Cross T. Actinomycetes. In Methods in Microbiology. Academic Press London, England. 1971;4:295–334.

  17. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 1987;19:161–207.

    Article  CAS  Google Scholar 

  19. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A. et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods. 1984;2:233–241.

    Article  CAS  Google Scholar 

  20. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids (MIDI Technical Note 101). Newark, DE: MIDI. 1990.

  21. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol. 1996;42:989–1005.

    Article  Google Scholar 

  22. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol. 1977;100:221–230.

    Article  CAS  PubMed  Google Scholar 

  23. Tamaoka J. Determination of DNA Base Composition. In: Goodfellow M, O’Donnell AG, editors. Chemical methods on prokaryotic systematics. Wiley, Chichester. 1994, pp 463–70.

  24. Inahashi Y, Matsumoto A, Danbara H, Omura S, Takahashi Y. Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. Int J Syst Evol Microbiol. 2010;60:2652–2658.

    Article  CAS  PubMed  Google Scholar 

  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98.

    CAS  Google Scholar 

  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article  CAS  PubMed  Google Scholar 

  29. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool. 1969;18:1.

    Article  Google Scholar 

  30. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

    Article  CAS  PubMed  Google Scholar 

  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–91.

    Article  PubMed  Google Scholar 

  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365

    Article  PubMed  PubMed Central  Google Scholar 

  35. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:206–14.

    Article  Google Scholar 

  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–31.

    Article  CAS  PubMed  Google Scholar 

  38. Meier-Kolthoff PJ, Alexander FA, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60–73.

    Article  Google Scholar 

  39. Lechevalier MP, Lechevalier HA. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–43.

    Article  CAS  Google Scholar 

  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.

    Article  CAS  PubMed  Google Scholar 

  41. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.

    Article  CAS  PubMed  Google Scholar 

  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kadler O, Krichevsky MI. et al. International committee on systematic bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37:463–4.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Office of the Permanent Secretary, Ministry of Higher Education, Science Research, and Innovation (RGNS63-098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khomsan Supong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supong, K., Niemhom, N., Suriyachadkun, C. et al. Actinomycetospora termitidis sp. nov., an insect-derived actinomycete isolated from termite (Odontotermes formosanus). J Antibiot 77, 299–305 (2024). https://doi.org/10.1038/s41429-024-00712-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-024-00712-8

Search

Quick links