Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ultrastretchable hydrogels with strong damping effects

Abstract

Hydrogels can be stretched to several tens or even hundreds of times their original lengths, making them suitable for various applications. They have shown great potential for use in sensors and wearable devices. Although many attempts have been made to develop highly stretchable hydrogels, combining high stretchability and excellent damping remains a challenge. This study reports a method that significantly improved the stretchability and damping properties of hydrogels. The innovation is the replacement of traditional short-chain crosslinkers, such as N,N-methylenebis(acrylamide) (MBA), with long-chain crosslinkers. With increasing chain lengths, the spaces in the networks became larger, which reduced the interactions between the molecular chains in the network. As a result, the molecular chains of the network could slide when stretched, which greatly increased the mechanical elongation and enabled damping by the hydrogel (up to 85%). The maximum elongation reached 21800%, with a toughness of 11.32 MJ m−3. To the best of our knowledge, this elongation is superior to those in all previous reports. Our results provide a new approach for the development of highly stretchable and damping hydrogels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dai X, Long Y, Jiang B, Guo W, Sha W, Wang J, et al. Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 2022;15:5461–8.

    Article  ADS  CAS  Google Scholar 

  2. Li S, Liu G, Wen H, Liu G, Wang H, Ye M, et al. A skin-like pressure and vibration sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer. Adv Funct Mater. 2022;32:8.

  3. Zhang Y, Li T, Miao L, Kaur P, Men S, Wang Q, et al. A highly sensitive and ultra-stretchable zwitterionic liquid hydrogel-based sensor as anti-freezing ionic skin. J Mater Chem A. 2022;10:3970–88.

    Article  CAS  Google Scholar 

  4. Lu L, Zhou W, Chen Z, Hu Y, Yang Y, Zhang G, et al. A supramolecular hydrogel enabled by the synergy of hydrophobic interaction and quadruple hydrogen bonding. Gels. 2022;8:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shah D, Yang B, Kriegman S, Levin M, Bongard J, Kramer-Bottiglio R. Shape changing robots: bioinspiration, simulation, and physical realization. Adv Mater 2021;33:2002882.

    Article  CAS  Google Scholar 

  6. Park B, Shin JH, Ok J, Park S, Jung W, Jeong C, et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science. 2022;376:624–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhao Q, Li C, Shum HC, Du X. Shape-adaptable biodevices for wearable and implantable applications. Lab Chip. 2020;20:4321–41.

    Article  CAS  PubMed  Google Scholar 

  8. Guo J, Liu X, Jiang N, Yetisen AK, Yuk H, Yang C, et al. Highly stretchable, strain sensing hydrogel optical fibers. Adv Mater 2016;28:10244–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang Z, Shen P, Li Tan M, Yan Q, Viktorova J, Cementon C, et al. 3D and 4D printable dual cross-linked polymers with high strength and humidity-triggered reversible actuation. Mater Adv. 2021;2:5124–34.

    Article  CAS  Google Scholar 

  10. Du X, Cui H, Xu T, Huang C, Wang Y, Zhao Q, et al. Reconfiguration, camouflage, and color‐shifting for bioinspired adaptive hydrogel‐based millirobots. Adv Funct Mater. 2020;30:9.

  11. Li Q, Wang X, Dong L, Liu C, Fan S. Spirally deformable soft actuators and their designable helical actuations based on a highly oriented carbon nanotube film. Soft Matter. 2019;15:9788–96.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wang J, Wu B, Wei P, Sun S, Wu P. Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat Commun 2022;13:4411.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laftah WA, Hashim S, Ibrahim AN. Polymer hydrogels: a review. Polym Plast Technol Eng 2011;50:1475–86.

    Article  CAS  Google Scholar 

  14. Qiao Z, Cao M, Michels K, Hoffman L, Ji HF. Design and fabrication of highly stretchable and tough hydrogels. Polym Rev. 2019;60:420–41.

    Article  Google Scholar 

  15. Qiao Z, Parks J, Choi P, Ji HF. Applications of highly stretchable and tough hydrogels. Polym -Basel. 2019;11:1773.

    CAS  Google Scholar 

  16. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater 2003;15:1155–8.

    Article  CAS  Google Scholar 

  17. Li G, Huang K, Deng J, Guo M, Cai M, Zhang Y, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv Mater. 2022;34:2200261.

    Article  CAS  Google Scholar 

  18. Li L, Wu P, Yu F, Ma J. Double network hydrogels for energy/environmental applications: challenges and opportunities. J Mater Chem A. 2022;10:9215–47.

    Article  CAS  Google Scholar 

  19. Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 2014;5:5124.

    Article  ADS  Google Scholar 

  20. Lu CH, Yu CH, Yeh YC. Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomater. 2021;130:66–79.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HJ, Sun TL, Zhang AK, Ikura Y, Nakajima T, Nonoyama T, et al. Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater. 2016;28:4884–90.

    Article  CAS  PubMed  Google Scholar 

  22. Eklund A, Ikkala O, Zhang H. Highly efficient switchable underwater adhesion in channeled hydrogel networks. Adv Funct Mater. https://doi.org/10.1002/adfm.202214091.

  23. Nakajima T, Fukuda Y, Kurokawa T, Sakai T, Chung UI, Gong JP. Synthesis and fracture process analysis of double network hydrogels with a well-defined first network. Acs Macro Lett. 2013;2:518–21.

    Article  CAS  PubMed  Google Scholar 

  24. Chen H, Peng C, Wang L, Li X, Yang M, Liu H, et al. Mechanically tough, healable hydrogels synergistically reinforced by UV-responsive crosslinker and metal coordination interaction for wound healing application. Chem Eng J. 2021;403:10.

  25. Jeon I, Cui J, Illeperuma WR, Aizenberg J, Vlassak JJ. Extremely stretchable and fast self-healing hydrogels. Adv Mater. 2016;28:4678–83.

    Article  CAS  PubMed  Google Scholar 

  26. Tan S, Wang C, Yang B, Luo J, Wu Y. Unbreakable hydrogels with self-recoverable 10 200% stretchability. Adv Mater. 2022;34:2206904.

    Article  CAS  Google Scholar 

  27. Jing X, Mi H-Y, Peng X-F, Turng L-S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon. 2018;136:63–72.

    Article  CAS  Google Scholar 

  28. Fang J, Mehlich A, Koga N, Huang J, Koga R, Gao X, et al. Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nat Commun. 2013;4:2974.

    Article  ADS  PubMed  Google Scholar 

  29. Biligiri KP. Effect of pavement materials’ damping properties on tyre/road noise characteristics. Constr Build Mater. 2013;49:223–32.

    Article  Google Scholar 

  30. Wollmann T, Modler N, Dannemann M, Langkamp A, Nitschke S, Filippatos A. Design and testing of composite compressor blades with focus on the vibration behaviour. Compos Part A appl Sci Manuf. 2017;92:183–9.

    Article  CAS  Google Scholar 

  31. Introduction to Polymer Science. Introduction to Physical Polymer Science2005. p. 1-28

  32. Corsaro RD, Sperling LH, editors. Sound and vibration damping with polymers 1990.

  33. Chen Q, Zhu L, Zhao C, Wang Q, Zheng J. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater. 2013;25:4171–6.

    Article  CAS  PubMed  Google Scholar 

  34. Mredha MTI, Guo YZ, Nonoyama T, Nakajima T, Kurokawa T, Gong JP. Hydrogels: a facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv Mater. 2018;30:1870060.

    Article  Google Scholar 

  35. Lin P, Ma S, Wang X, Zhou F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater. 2015;27:2054–9.

    Article  CAS  PubMed  Google Scholar 

  36. Li DW, Bu XC, Xu ZP, Luo YW, Bai H. Bioinspired multifunctional cellular plastics with a negative poisson’s ratio for high-energy dissipation. Adv Mater. 2020;32:e2001222.

    Article  PubMed  Google Scholar 

  37. Gu J, Wu G, Zhang Q. Effect of porosity on the damping properties of modified epoxy composites filled with fly ash. Scr Mater. 2007;57:529–32.

    Article  CAS  Google Scholar 

  38. Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, et al. Carbon nanotube sponges. Adv Mater. 2010;22:617–21.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Q, Zhao MQ, Liu Y, Cao AY, Qian WZ, Lu YF, et al. Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers. Adv Mater. 2009;21:2876.

    Article  CAS  Google Scholar 

  40. Cura F, Sesana R, Zhang XC, Scarpa F, Lu WJ, Peng HX. Stiffness, energy dissipation, and hyperelasticity in hierarchical multilayer composite nanocoated open-cell polyurethane foams. Adv Eng Mater. 2019;21:12.

  41. Gui X, Zeng Z, Zhu Y, Li H, Lin Z, Gan Q, et al. Three-dimensional carbon nanotube sponge-array architectures with high energy dissipation. Adv Mater. 2014;26:1248–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Grant No. 51873064, 52373263) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Zhang, L. Ultrastretchable hydrogels with strong damping effects. Polym J (2024). https://doi.org/10.1038/s41428-024-00894-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00894-w

Search

Quick links