Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fluorophore-glucan conjugate for oligosaccharide sensing in aqueous media

Abstract

The ability to sense saccharides in aqueous media using conventional supramolecular approaches was a turning point in modern chemistry. Herein, we performed oligosaccharide sensing using fluorophore-modified branched glucans. Through the newly developed glucan-based chemosensor, acarbose sensing was achieved in a selectively and sensitive manner. The optical properties and morphological changes in the chemosensor were investigated, revealing that the globule-to-coaggregation process plays a key role in oligosaccharide sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. James TD, Sandanayake KRAS, Shinkai S. Saccharide sensing with molecular receptors based on boronic acid. Angew Chem Int Ed Engl. 1996;35:1910–22.

    Article  Google Scholar 

  2. Davis AP, Wareham RS. Carbohydrate recognition through noncovalent interactions: a challenge for biomimetic and supramolecular chemistry. Angew Chem Int Ed. 1999;38:2978–96.

    Article  CAS  Google Scholar 

  3. Arnold MA, Small GW. Noninvasive glucose sensing. Anal Chem. 2005;77:5429–39.

    Article  CAS  PubMed  Google Scholar 

  4. Borisov SM, Wolfbeis OS. Optical biosensors. Chem Rev. 2008;108:423–61.

    Article  CAS  PubMed  Google Scholar 

  5. Kubik S. Synthetic lectins. Angew Chem Int Ed. 2009;48:1722–5.

    Article  CAS  Google Scholar 

  6. Davis AP. Synthetic lectins. Org Biomol Chem. 2009;7:3629–38.

    Article  CAS  PubMed  Google Scholar 

  7. Mazik M. Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. Chem Soc Rev. 2009;38:935–56.

    Article  CAS  PubMed  Google Scholar 

  8. Kejík Z, Bříza T, Králová J, Martásek P, Král V. Selective recognition of a saccharide-type tumor marker with natural and synthetic ligands: a new trend in cancer diagnosis. Anal Bioanal Chem. 2010;398:1865–70.

    Article  PubMed  Google Scholar 

  9. Asensio JL, Ardá A, Cañada FJ, Jiménez-Barbero J. Carbohydrate-aromatic interactions. Acc Chem Res. 2013;46:946–54.

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem Soc Rev. 2013;42:8032–48.

    Article  CAS  PubMed  Google Scholar 

  11. Miron CE, Petitjean A. Sugar recognition: designing artificial receptors for applications in biological diagnostics and imaging. ChemBioChem. 2015;16:365–79.

    Article  CAS  PubMed  Google Scholar 

  12. Fukuhara G. Analytical supramolecular chemistry: colorimetric and fluorimetric chemosensors. J Photochem Photobiol C Photochem Rev. 2020;42:100340.

    Article  CAS  Google Scholar 

  13. Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, et al. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv. 2023;13:264–80.

    Article  CAS  Google Scholar 

  14. Cao X, Yao J, Jia M, Shen X, Zhang J, Ju S. Serum CCAT2 as a biomarker for adjuvant diagnosis and prognostic prediction of cervical cancer. J Ovar Res. 2022;15:20.

    Article  CAS  Google Scholar 

  15. Matsunaga T, Saito H, Kuroda H, Osaki T, Takahashi S, Iwamoto A, et al. CA19-9 in combination with P-CRP as a predictive marker of immune-related adverse events in patients with recurrent or unresectable advanced gastric cancer treated with nivolumab. BMC Cancer. 2022;22:418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cen P, Ni X, Yang J, Graham DY, Li M. Circulating tumor cells in the diagnosis and management of pancreatic cancer. Biochimica et Biophysica Acta. 2012;1826:350–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. James TD, Sandanayake KRAS, Shinaki S. Chiral discrimination of monosaccharides using a fluorescenct molecular sensor. Nature. 1995;374:345–7.

    Article  CAS  Google Scholar 

  18. Yashima E, Nimura T, Matsushima T, Okamoto Y. Poly((4-dihydroxyborophenyl)acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism. J Am Chem Soc. 1996;118:9800–1.

    Article  CAS  Google Scholar 

  19. Samoei GK, Wang W, Escobedo JO, Xu X, Schneider HJ, Cook RL, et al. A chemomechanical polymer that functions in blood plasma with high glucose selectivity. Angew Chem Int Ed. 2006;45:5319–22.

    Article  CAS  Google Scholar 

  20. Yang X, Lee MC, Sartain F, Pan X, Lowe CR. Designed boronate ligands for glucose-selective holographic sensors. Chem Eur J. 2006;12:8491–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Li Y. Luminescent nanocrystals for nonenzymatic glucose concentration determination. Chem Eur J. 2007;13:4203–7.

    Article  CAS  PubMed  Google Scholar 

  22. Schiller A, Wessling RA, Singaram B. A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. Angew Chem Int Ed. 2007;46:6457–9.

    Article  CAS  Google Scholar 

  23. Edwards NY, Sager TW, McDevitt JT, Anslyn EV. Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. J Am Chem Soc. 2007;129:13575–83.

    Article  CAS  PubMed  Google Scholar 

  24. Pal A, Bérubé M, Hall DG. Design, synthesis, and screening of a library of peptidyl bis(boroxoles) as oligosaccharide receptors in water: identification of a receptor for the tumor marker TF-antigen disaccharide. Angew Chem Int Ed. 2010;49:1492–5.

    Article  CAS  Google Scholar 

  25. Carrod AJ, Graglia F, Male L, Duff CL, Simpson P, Elsherif M, et al. Photo- and electrochemical dual-responsive iridium probe for saccharide detection. Chem Eur J. 2022;28:e202103541.

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi K, Asakawa Y, Kato Y, Aoyama Y. Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH-π interaction. J Am Chem Soc. 1992;114:10307–13.

    Article  CAS  Google Scholar 

  27. Chinnayelka S, McShane MJ. Microcapsule biosensors using competitive binding resonance energy transfer assays based on apoenzymes. Anal Chem. 2005;77:5501–11.

    Article  CAS  PubMed  Google Scholar 

  28. Schmuck C, Schwegmann M. Recognition of anionic carbohydrates by an artificial receptor in water. Org Lett. 2005;7:3517–20.

    Article  CAS  PubMed  Google Scholar 

  29. Mazik M, Cavga H. Carboxylate-based receptors for the recognition of carbohydrates in organic and aqueous media. J Org Chem. 2006;71:2957–63.

    Article  CAS  PubMed  Google Scholar 

  30. Waki M, Abe H, Inouye M. Translation of mutarotation into induced circular dichroism signals through helix inversion of host polymers. Angew Chem Int Ed. 2007;46:3059–61.

    Article  CAS  Google Scholar 

  31. Goto H, Furusho Y, Yashima E. Double helical oligoresorcinols specifically recognize oligosaccharides via heteroduplex formation through noncovalent interactions in water. J Am Chem Soc. 2007;129:9168–74.

    Article  CAS  PubMed  Google Scholar 

  32. Reenberg T, Nyberg N, Duus JØ, van Dongen JLJ, Meldal M. Specific recognition of disaccharides in water by an artificial bicyclic carbohydrate receptor. Eur J Org Chem. 2007;5003-9.

  33. Ferrand Y, Crump MP, Davis AP. A synthetic lectin analog for biomimetic disaccharide recognition. Science. 2007;318:619–22.

    Article  CAS  PubMed  Google Scholar 

  34. Striegler S, Gichinga MG. Disaccharide recognition by binuclear copper(II) complexes. Chem Commun. 2008;5930-2.

  35. Barwell NP, Crump MP, Davis AP. A synthetic lectin for β-glucosyl. Angew Chem Int Ed. 2009;48:7673–6.

    Article  CAS  Google Scholar 

  36. Ke C, Destecroix H, Crump MP, Davis AP. A simple and accessible synthetic lectin for glucose recognition and sensing. Nat Chem. 2012;4:718–23.

    Article  CAS  PubMed  Google Scholar 

  37. Rauschenberg M, Bandaru S, Waller MP, Ravoo BJ. Peptide-based carbohydrate receptors. Chem Eur J. 2014;20:2770–82.

    Article  CAS  PubMed  Google Scholar 

  38. Mooibroek TJ, Casas-Solvas JM, Harniman RL, Renney CM, Carter TS, Crump MP, et al. A threading receptor for polysaccharides. Nat Chem. 2016;8:69–74.

    Article  CAS  PubMed  Google Scholar 

  39. Behren S, Yu J, Pett C, Schorlemer M, Heine V, Fischöder T, et al. Fucose binding motifs on mucin core glycopeptides impact bacterial lectin recognition. Angew Chem Int Ed. 2023;62:e202302437.

    Article  CAS  Google Scholar 

  40. Fukuhara G, Inoue Y. Oligosaccharide sensing with chromophore-modified curdlan in aqueous media. Chem Commun. 2010;46:9128–30.

    Article  CAS  Google Scholar 

  41. Ogawa K, Miyagi M, Fukumoto T, Watanabe T. Effect of 2-chloroethanol, dioxane, or water on the conformation of a gel-forming β-1,3-D-glucan in DMSO. Chem Lett. 1973;2:943–6.

    Article  Google Scholar 

  42. Deslandes Y, Marchessault RH, Sarko A. Triple-helical structure of (1→3)-β-D-glucan. Macromolecules. 1980;13:1466–71.

    Article  CAS  Google Scholar 

  43. Numata M, Shinkai S. ‘Supramolecular wrapping chemistry’ by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures. Chem Commun. 2011;47:1961–75.

    Article  CAS  Google Scholar 

  44. Eleftheriadou I, Grigoropoulou P, Katsilambros N, Tentolouris N. The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr Diabetes Rev. 2008;4:340–56.

    Article  CAS  PubMed  Google Scholar 

  45. Fukuhara G, Sasaki M, Numata M, Mori T, Inoue Y. Oligosaccharide sensing in aqueous media by porphyrin-curdlan conjugates: a prêt-á-porter rather than haute-couture approach. Chem Eur J. 2017;23:11272–8.

    Article  CAS  PubMed  Google Scholar 

  46. Sasaki M, Ryoson Y, Numata M, Fukuhara G. Oligosaccharide sensing in aqueous media using porphyrin-curdlan conjugates: an allosteric signal-amplification system. J Org Chem. 2019;84:6017–27.

    Article  CAS  PubMed  Google Scholar 

  47. Kurohara H, Hori Y, Numata M, Fukuhara G. Oligosaccharide sensing using fluorophore-probed curdlans in aqueous media. ACS Appl Polym Mater. 2023;5:2254–63.

    Article  CAS  Google Scholar 

  48. Tamano K, Nakasha K, Iwamoto M, Numata M, Suzuki T, Uyama H, et al. Chiroptical properties of reporter-modified or reporter-complexed highly 1,6-glucose-branched β-1,3-glucan. Polym J. 2019;51:1063–71.

    Article  CAS  Google Scholar 

  49. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: together we shine, united we soar! Chem Rev. 2015;115:11718–940.

    Article  CAS  PubMed  Google Scholar 

  50. Felorzabihi N, Froimowicz P, Haley JC, Bardajee GR, Li B, Bovero E, et al. Determination of the Förster distance in polymer films by fluorescence decay for donor dyes with a nonexponential decay profile. J Phys Chem B. 2009;113:2262–72.

    Article  CAS  PubMed  Google Scholar 

  51. Sangghaleh F, Sychugov I, Yang Z, Veinot JGC, Linnros J. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano. 2015;9:7097–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GF acknowledges the generous support provided by Grants-in-Aid (Nos. 19H02746 and 23H04020) from the Japan Society for the Promotion of Science (JSPS). We are grateful to Prof. Yoshihisa Inoue at Osaka University for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Fukuhara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurohara, H., Hori, Y., Numata, M. et al. Fluorophore-glucan conjugate for oligosaccharide sensing in aqueous media. Polym J 56, 473–480 (2024). https://doi.org/10.1038/s41428-024-00889-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-024-00889-7

Search

Quick links