Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Polymerization-induced vitrification, apparent phase separation, and reaction acceleration during bulk polymerization

Abstract

A mixture of glassy polymers and small molecules (e.g., solvent, monomer, or additives) are present in many applications, including the adhesion, painting, and resin curing. The relative concentration change of the mixture, either via a chemical reaction or evaporation, can cause vitrification. During bulk polymerization, the relative concentration of the formed polymer and the monomer changes as a function of the reaction time. We have intensively investigated the bulk polymerization of methyl methacrylate. We found that an apparent phase separation occurs in the vicinity of the polymerization-induced vitrification. Furthermore, the apparent phase separation and a sudden reaction acceleration known as the Trommsdorff effect simultaneously occurred. In this focus review, we report novel aspects in understanding the Trommsdorff effect, especially the connection between polymerization-induced vitrification, apparent phase separation and the effect. Other related phenomena are then discussed as perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rubinstein M, Colby RM. Polymer physics. (Oxford University Press, 2006).

  2. Daoud M, Jannink G. Temperature-concentration diagram of polymer solutions. J Phys. 1976;37:973–9.

    Article  CAS  Google Scholar 

  3. Anderson PW. Through the glass lightly. Science. 1995;264:1615–6.

    Article  Google Scholar 

  4. Lodge TP. Celebrating 50 years of macromolecules. Macromolecules. 2017;50:9525–7.

    Article  CAS  Google Scholar 

  5. Angell CA. The old problems of glass and the glass transition, and the many new twists. Proc Natl Acad Sci. 2006;92:6675–82.

    Article  Google Scholar 

  6. Jadhav NR, Gaikwad VL, Nair KJ, Kadam HM. Glass transition temperature: basics and application in pharmaceutical sector. Asian J Pharm. 2009;3:82–9.

    Article  Google Scholar 

  7. Kremer F & Schönhals A. Broadband dielectric spectroscopy. (Springer-Verlag Berlin Heidelberg, 2003).

  8. Debenedetti PG, Stillinger FH. Supercooled liquds and the glass transition. Nature. 2001;410:259.

    Article  CAS  PubMed  Google Scholar 

  9. Ngai KL, Gopalakrishnan TR, Beiner M. Relaxation in poly(alkyl methacrylate)s: change of intermolecular coupling with molecular structure, tacticity, molecular weight, copolymerization, crosslinking, and nanoconfinement. Polymer. 2006;47:7222–30.

    Article  CAS  Google Scholar 

  10. Ediger MD. Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem. 2000;51:99–128.

    Article  CAS  PubMed  Google Scholar 

  11. Floudas G. Effects of pressure on systems with intrinsic orientational order. Prog Polym Sci. 2004;29:1143–71.

    Article  CAS  Google Scholar 

  12. Suzuki Y, Shinagawa Y, Kato E, Mishima R, Fukao K, Matsumoto A. Polymerization-induced vitrification and kinetic heterogenization at the onset of the Trommsdorff effect. Macromolecules. 2021;54:3293–303.

    Article  CAS  Google Scholar 

  13. Mattsson J, Wyss HM, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman DR, et al. Soft colloids make strong glasses. Nature. 2009;462:83–6.

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka H. Unusual phase separation in a polymer solution caused by asymmetric molecular dynamics. Phys Rev Lett. 1993;71:3158–61.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka H. Viscoelastic phase separation. J Phys Condens Matter. 2000;12:R207.

    Article  CAS  Google Scholar 

  16. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28:1223–70.

    Article  CAS  Google Scholar 

  17. Suzuki Y, Cousins DS, Shinagawa Y, Bell RT, Matsumoto A, Stebner AP. Phase separation during bulk polymerization of methyl methacrylate. Polym J. 2019;51:423–31.

    Article  CAS  Google Scholar 

  18. Haas DE, Quijada JN, Picone SJ, Birnie DP III. Effect of solvent evaporation rate on ‘skin’ formation during spin coating of complex solutions. Sol-Gel Opt V. 2000;3943:280–4.

    Article  CAS  Google Scholar 

  19. Villalobos MA, Debling J. Bulk and solution processes. In: Handbook of polymer synthesis, characterization, and processing. p. 273–94 (2013).

  20. Suzuki Y, Mishima R, Matsumoto A. Bulk polymerization kinetics of methyl methacrylate at broad temperature range investigated by differential scanning calorimetry. Int J Chem Kinet. 2022;54:361–70.

    Article  CAS  Google Scholar 

  21. Keating JJ, Plawsky JL. Radical lifetimes in atom transfer radical polymerization: a Monte Carlo and deterministic investigation. Macromolecules. 2020;53:7224–38.

    Article  Google Scholar 

  22. Flory PJ. Principles of polymer chemistry. (Cornell University Press, 1953).

  23. Hiemenz PC, Lodge TP. Polymer chemistry, 2nd ed. (CRC Press, Taylor & Francis Group, 2007).

  24. Suzuki Y, Mishima R, Kato E, Matsumoto A. Analysis of the glass effect and Trommsdorff effect during bulk polymerization of methyl methacrylate, ethyl methacrylate, and butyl methacrylate. Polym J. 2023;55:229–38.

    Article  CAS  Google Scholar 

  25. Suzuki Y, Onozato S, Shinagawa Y, Matsumoto A. Microporous structure formation of poly(methyl methacrylate) via polymerization-induced phase separation in the presence of poly(ethylene glycol). ACS Omega. 2022;7:38933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brandrup J, Immergut EH, Grulke EA. Polymer handbook. (Wiley, 2003).

  27. Norrish RGW, Brookman EF. The mechanism of polymerization reactions. I. The polymerization of styrene and methyl methacrylate. Proc R Soc Lond Ser A Math Phys Sci. 1939;171:147–71.

    CAS  Google Scholar 

  28. Norrish RGW, Smith RR. Catalysed polymerization of methyl metharylate in the liquid phase. Nature. 1942;150:336–7.

    Article  CAS  Google Scholar 

  29. Trommsdorff VE, Köhle H, Lagally P. Zur polymerisation des methacrylsäuremethylesters. Die Makromol Chem. 1948;1:169–98.

    Article  CAS  Google Scholar 

  30. Schulz VGV, Harborth G. Über Den Mechanismus Des Explosiven Polymerisationsverlaufes Des Methacrylsäuremethylesters1. Die Makromol Chem. 1947;1:106–39.

    Article  CAS  Google Scholar 

  31. Matheson MS, Auer EE, Bevilacqua EB, Hart EJ. Rate constants in free radical polymerizations. I. Methyl methacrylate. J Am Chem Soc. 1949;71:497–504.

    Article  CAS  Google Scholar 

  32. Matheson MS, Auer EE, Bevilacqua EB, Hart EJ. Rate constants in free radical polymerizations. IV. Methyl acrylate. J Am Chem Soc. 1951;73:5395–400.

    Article  CAS  Google Scholar 

  33. Zetterlund PB, Yamazoe H, Yamada B, Hill DJT, Pomery PJ. High-conversion free-radical bulk polymerization of styrene: termination kinetics studied by electron spin resonance, fourier transform near-infrared spectroscopy, and gel permeation chromatography. Macromolecules. 2001;34:7686–91.

    Article  CAS  Google Scholar 

  34. West AG, Barner-Kowollik C, Perrier S. Poly(ethylene glycol) as a ‘green solvent’ for the RAFT polymerization of methyl methacrylate. Polymer. 2010;51:3836–42.

    Article  CAS  Google Scholar 

  35. Beuermann S, Buback M, Davis TP, Gilbert RG, Hutchinson RA, Olaj OF, et al. Critically evaluated rate coefficients for free-radical polymerization, 2: propagation rate coefficients for methyl methacrylate. Macromol Chem Phys. 1997;198:1545–60.

    Article  CAS  Google Scholar 

  36. Tulig TJ, Tirrell M. Toward a molecular theory of the Trommsdorff effect. Macromolecules. 1981;14:1501–11.

    Article  CAS  Google Scholar 

  37. De Gennes PG. Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys. 1971;55:572–9.

    Article  Google Scholar 

  38. Pierre-giles De Gennes. Scaling concepts in polymer physics. (Cornell University Press, 1979).

  39. Doi M, Edwards SF. Dynamics of concentrated polymer systems part 1. Brownian motion in the equilibrium state. J Chem Soc, Faraday Trans. 1978;74:1789–801.

    Article  CAS  Google Scholar 

  40. O’Neil GA, Wisnudel MB, Torkelson JM. A critical experimental examination of the gel effect in free radical polymerization: do entanglements cause autoacceleration? Macromolecules. 1996;29:7477–90.

    Article  Google Scholar 

  41. Achilias DS, Kipasissides C. Development of a general mathematical framework for modeling diffusion-controlled free-radical polymerization reactions. Macromolecules. 1992;25:3739–50.

    Article  CAS  Google Scholar 

  42. Achilias DS. A review of modeling of diffusion controlled polymerization reactions. Macromol Theory Simul. 2007;16:319–47.

    Article  CAS  Google Scholar 

  43. O’Neil GA, Torkelson JM. Modeling insight into the diffusion-limited cause of the gel effect in free radical polymerization. Macromolecules. 1999;32:411–22.

    Article  Google Scholar 

  44. Odian G, Acker T, Sobel M. Accelerative effects in radiation‐induced graft polymerization. J Appl Polym Sci. 1963;7:245–50.

    Article  CAS  Google Scholar 

  45. Wolff EHP, René Bos AN. Modeling of polymer molecular weight distributions in free-radical polymerization reactions. Application to the case of polystyrene. Ind Eng Chem Res. 1997;36:1163–70.

    Article  CAS  Google Scholar 

  46. Tran-Cong-Miyata Q, Nakanishi H. Phase separation of polymer mixtures driven by photochemical reactions: current status and perspectives. Polym Int. 2017;66:213–22.

    Article  CAS  Google Scholar 

  47. Tulig TJ, Tirrell M. On the onset of the Trommsdorff effect. Macromolecules. 1982;15:459–63.

    Article  CAS  Google Scholar 

  48. Wöll D, Braeken E, Deres A, De Schryver FC, Uji-I H, Hofkens J. Polymers and single molecule fluorescence spectroscopy, what can we learn? Chem Soc Rev. 2009;38:313–28.

    Article  PubMed  Google Scholar 

  49. Stempfle B, Dill M, Winterhalder MJ, Müllen K, Wöll D. Single molecule diffusion and its heterogeneity during the bulk radical polymerization of styrene and methyl methacrylate. Polym Chem. 2012;3:2456–63.

    Article  CAS  Google Scholar 

  50. Nölle JM, Primpke S, Müllen K, Vana P, Wöll D. Diffusion of single molecular and macromolecular probes during the free radical bulk polymerization of MMA-towards a better understanding of the Trommsdorff effect on a molecular level. Polym Chem. 2016;7:4100–5.

    Article  Google Scholar 

  51. Samitsu S, Zhang R, Peng X, Krishnan MR, Fujii Y, Ichinose I. Flash freezing route to mesoporous polymer nanofibre networks. Nat Commun. 2013;4:1–7.

    Article  Google Scholar 

  52. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161–210.

    Article  CAS  Google Scholar 

  53. Fukao K, Uno S, Miyamoto Y, Hoshino A, Miyaji H. Dynamics of α and β processes in thin polymer films: poly(vinyl acetate) and poly(methyl methacrylate). Phys Rev E. 2001;64:051807.

    Article  CAS  Google Scholar 

  54. Harsch M, Herzog F, Karger-Kocsis J. Cure-induced normal force development in unfilled and filled epoxy resins. J Compos Mater. 2008;42:2299–309.

    Article  CAS  Google Scholar 

  55. Shundo A, Aoki M, Yamamoto S, Tanaka K. Cross-linking effect on segmental dynamics of well-defined epoxy resins. Macromolecules. 2021;54:5950–6.

    Article  CAS  Google Scholar 

  56. Aoki M, Shundo A, Yamamoto S, Tanaka K. Effect of a heterogeneous network on glass transition dynamics and solvent crack behavior of epoxy resins. Soft Matter. 2020;16:7470–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ogawa H, Aoki M, Ono S, Watanabe Y, Yamamoto S, Tanaka K, et al. Spatial distribution of the network structure in epoxy resin via the MAXS-CT method. Langmuir. 2022;38:11432–9.

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka H, Fukumori K, Nishi T. Study of chemical gelation dynamics of acrylamide in water by real-time pulsed nuclear magnetic resonance measurement. J Chem Phys. 1988;89:3363–72.

    Article  CAS  Google Scholar 

  59. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell. 2016;165:1686–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;11:357.

  61. Tanaka H. Viscoelastic phase separation in biological cells. Commun Phys. 2022;5:167.

    Article  CAS  Google Scholar 

  62. Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirilä P, Leskinen J, et al. An amorphous solid-state of biogenic secondary organic aerosol particles. Nature. 2010;467:824–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author deeply acknowledges Prof. Akikazu Matsumoto for his scientific support, discussions, and encouragement. The author would like to thank Prof. Koji Fukao for the experimental support and discussions. The author would like to express his appreciation to all his past and current students for their valuable contributions to this scientific endeavor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Suzuki.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y. Polymerization-induced vitrification, apparent phase separation, and reaction acceleration during bulk polymerization. Polym J 55, 807–815 (2023). https://doi.org/10.1038/s41428-023-00785-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00785-6

Search

Quick links