Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Kinesin motors driven microtubule swarming triggered by UV light

Abstract

We report the swarming of microtubules driven by the biomolecular motor kinesin and dissociation of microtubule swarms under UV and visible light irradiation, respectively. We introduced para tert-butyl-substituted azobenzene, a photoresponsive molecule, to the backbone of single strand DNA, which functions as a photoswitch. Due to the photoswitch, the swarming of DNA-conjugated microtubules was controlled and reversible regulation of microtubule swarming was achieved in a repeated manner upon alternate irradiation with UV and visible light. This reversible swarming of microtubules could provide new opportunities for designing complex swarming systems with the ability of multitasking, expediting the development of molecular machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Chakraborty D, Bhunia S, De R. Survival chances of a prey swarm: how the cooperative interaction range affects the outcome. Sci Rep. 2020;10:1–8. https://doi.org/10.1038/s41598-020-64084-3

    Article  CAS  Google Scholar 

  2. Mlot NJ, Tovey CA, Hu DL. Fire ants self-assemble into waterproof rafts to survive floods. Proc Natl Acad Sci USA 2011;108:7669–73. https://doi.org/10.1073/pnas.1016658108

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lemasson BH, Haefner JW, Bowen MD. Schooling Increases Risk Exposure for Fish Navigating Past Artificial Barriers. PLOS ONE. 2014;9:e108220.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rubenstein M, Cornejo A, Nagpal R. Programmable self-assembly in a thousand-robot swarm. Science 2014;345:795–9. https://doi.org/10.1126/science.1254295

    Article  CAS  PubMed  Google Scholar 

  5. Gauci M, Chen J, Li W, Dodd TJ, Groß R. Clustering objects with robots that do not compute, 13th International Conference on Autonomous Agents and Multiagent Systems. AAMAS 2014;1:421–8.

    Google Scholar 

  6. Schranz M, Umlauft M, Sende M, Elmenreich W. Swarm Robotic Behaviors and Current Applications. Front Robot AI. 2020;7:36 https://doi.org/10.3389/frobt.2020.00036

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chowdhury S, Jing W, Cappelleri DJ. Controlling multiple microrobots: recent progress and future challenges. J Micro-Bio Robot. 2015;10:1–11. https://doi.org/10.1007/s12213-015-0083-6

    Article  Google Scholar 

  8. Keya JJ, Kabir AMR, Inoue D, Sada K, Hess H, Kuzuya A, et al. Control of swarming of molecular robots. Sci Rep. 2018;8:1–10. https://doi.org/10.1038/s41598-018-30187-1

    Article  CAS  Google Scholar 

  9. Vicsek T. Swarming microtubules. Nature. 2012;483:411–2. https://doi.org/10.1038/483411a

    Article  CAS  PubMed  Google Scholar 

  10. Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci Robot. 2019;4:eaav8006. https://doi.org/10.1126/scirobotics.aav8006

    Article  PubMed  Google Scholar 

  11. Yan J, Han M, Zhang J, Xu C, Luijten E, Granick S. Reconfiguring active particles by electrostatic imbalance. Nat Mater. 2016;15:1095–9. https://doi.org/10.1038/nmat4696

    Article  CAS  PubMed  Google Scholar 

  12. Aghakhani A, Yasa O, Wrede P, Sitti M. Acoustically powered surface-slipping mobile microrobots. Proc Natl Acad Sci USA 2020;117:3469–77. https://doi.org/10.1073/pnas.1920099117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ibele M, Mallouk TE, Sen A. Schooling behavior of light-powered autonomous micromotors in water. Angew Chem - Int Ed. 2009;48:3308–12. https://doi.org/10.1002/anie.200804704

    Article  CAS  Google Scholar 

  14. Suzuki Y, Endo M, Yang Y, Sugiyama H. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J Am Chem Soc. 2014;136:1714–7. https://doi.org/10.1021/ja4109819

    Article  CAS  PubMed  Google Scholar 

  15. Janke C, Steinmetz MO. Optochemistry to control the microtubule cytoskeleton. EMBO J. 2015;34:2114–6. https://doi.org/10.15252/embj.201592415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, et al., DNA-assisted swarm control in a biomolecular motor system. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-017-02778-5.

  17. Akter M, Keya JJ, Kayano K, Kabir AMR, Inoue D, Hess H, et al. Cooperative cargo transportation by a swarm of molecular machines. Sci Robot. 2022;7:eabm0677. https://doi.org/10.1126/scirobotics.abm0677

    Article  CAS  PubMed  Google Scholar 

  18. Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S. Molecular robots with sensors and intelligence. Acc Chem Res. 2014;47:1681–90. https://doi.org/10.1021/ar400318d

    Article  CAS  PubMed  Google Scholar 

  19. Smith LM. Nanotechnology: Molecular robots on the move. Nature. 2010;465:167–8. https://doi.org/10.1038/465167a

    Article  CAS  PubMed  Google Scholar 

  20. Kabir AMR, Inoue D, Kakugo A. Molecular swarm robots: recent progress and future challenges. Sci Technol Adv Mater. 2020;21:323–32. https://doi.org/10.1080/14686996.2020.1761761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murata S, Konagaya A, Kobayashi S, Saito H, Hagiya M. Molecular robotics: a new paradigm for artifacts. N Gener Comput. 2013;31:27–45. https://doi.org/10.1007/s00354-012-0121-z

    Article  Google Scholar 

  22. Ishii S, Akter M, Keya JJ, Rashid MR, Afroze F, Nasrin SR, et al. Purification of Tubulin from Porcine Brain and its Fluorescence Dye Modification, Microtubules, Methods and Protocols, Methods in Molecular Biology. Springer Nat. 2430:3–16. https://doi.org/10.1007/978-1-0716-1983-4_1

  23. Case RB, Pierce DW, Hom-Booher N, Hart CL, Vale RD. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997;90:959–66. https://doi.org/10.1016/S0092-8674(00)80360-8

    Article  CAS  PubMed  Google Scholar 

  24. Akter M, Keya JJ, Kabir AMR, Rashid MR, Ishii S, Kakugo A. Functionalization of tubulin: approaches to modify tubulin with biotin and DNA, Microtubules, Methods and Protocols, Methods in Molecular Biology. Springer Nat. 2430:47–59. https://doi.org/10.1007/978-1-0716-1983-4_3

  25. Ishii S, Murayama K, Sada K, Asanuma H, Kakugo A. Unexpected Dissociation of Photoresponsive UV-ON DNA Carrying p-tert-Butyl Azobenzene under UV Light Irradiation. Chem Lett. 2022;51:292–5.

    Article  CAS  Google Scholar 

  26. Akter M, Keya JJ, Kabir AMR, Asanuma H, Murayama K, Sada K, et al. Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem Commun. 2020;56:7953–6. https://doi.org/10.1039/D0CC03124K

    Article  CAS  Google Scholar 

  27. Afroze F, Inoue D, Farhana TI, Hiraiwa T, Akiyama R, Kabir AMR, et al. Monopolar flocking of microtubules in collective motion. Biochem Biophys Res Commun. 2021;563:73–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP. Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir. 2011;27:13659–68. https://doi.org/10.1021/la202467f

    Article  CAS  PubMed  Google Scholar 

  29. Liang X, Takenaka N, Nishioka H, Asanuma H. Molecular design for reversing the photoswitching mode of turning on and off DNA hybridization. Chem - Asian J. 2008;3:553–60. https://doi.org/10.1002/asia.200700384

    Article  CAS  PubMed  Google Scholar 

  30. Asanuma H, Liang X, Nishioka H, Matsunaga D, Liu M, Komiyama M. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat Protoc. 2007;2:203–12.

    Article  CAS  PubMed  Google Scholar 

  31. Kerssemakers J, Howard J, Hess H, Diez S. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc Natl Acad Sci. 2006;103:15812–7. https://doi.org/10.1073/pnas.0510400103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang G, Zhang J. Photoresponsive molecular switches for biotechnology. J Photochem Photobiol C: Photochem Rev. 2012;13:299–309. https://doi.org/10.1016/j.jphotochemrev.2012.06.002

    Article  CAS  Google Scholar 

  33. Ranallo S, Sorrentino D, Ricci F. Orthogonal regulation of DNA nanostructure self-assembly and disassembly using antibodies. Nat Commun. 2019;10:1–9.

    Article  Google Scholar 

  34. Lerch MM, Hansen MJ, Velema WA, Szymanski W, Feringa BL. Orthogonal photoswitching in a multifunctional molecular system. Nat Commun. 2016;7:1–10.

    Article  Google Scholar 

  35. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, et al. Molecular robots guided by prescriptive landscapes. Nature. 2010;465:206–9. https://doi.org/10.1038/nature09012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Future AI and Robot Technology Research and Development Project from the New Energy and Industrial Technology Development Organization (NEDO), Japan; a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Engine” (JP18H05423); a Grant-in-Aid for Scientific Research (A) (JP21H04434), awarded to AK; a Grant-in-Aid for Transformative Research Areas (A) (JP20H05972) and a Grant-in-Aid for Scientific Research (C) (JP21K04846) awarded to AMRK Partial support by JSPS KAKENHI grant numbers (JP21H05025) awarded to HA, JP20K15399 to KM, and Grant-in-Aid for Transformative Research Areas “Molecular Cybernetics” (JP20H05970) to KM are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, S., Akter, M., Murayama, K. et al. Kinesin motors driven microtubule swarming triggered by UV light. Polym J 54, 1501–1507 (2022). https://doi.org/10.1038/s41428-022-00693-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00693-1

This article is cited by

Search

Quick links