Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reconfigurable and NIR-responsive shape memory polymer containing bipheunit units and graphene

Abstract

A series of near-infrared (NIR)-responsive shape memory polymers based on biphenyl epoxy (BPEP/GR) were prepared by mixed amine thermal curing and photocuring with an iodized salt photoinitiator and aromatic ferrocene photosensitizer (IOD/FC) initiator. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and tensile test results indicated that the addition of graphene to a biphenyl-containing epoxy resin matrix led to improvements in the transition temperature, strength, and shape memory properties. Shape recovery could be completed within a few seconds by NIR irradiation due to the high photothermal conversion efficiency of graphene. NIR laser irradiation promoted the activation and recombination of biphenyl units due to local heating. Thus, a reconfigured shape was obtained. This new reconfiguration method is expected to help realize the important application of BPEP/GR composites in the field of intelligent soft robots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu H, Gou J, Leng J, Du S. Synergistic effect of carbon nanofiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite. Smart Mater Struct. 2011;20:035017.

    Article  Google Scholar 

  2. Kaiser A, Winkler M, Krause S, Finkelmann H, Schmidt AM. Magnetoactive liquid crystal elastomer nanocomposites. J Mater Chem. 2009;19:538–43.

    Article  CAS  Google Scholar 

  3. Xie T. Tunable polymer multi-shape memory effect. Nature. 2010;464:267–70.

    Article  CAS  PubMed  Google Scholar 

  4. Boothby JM, Kim H, Ware TH. Shape changes in chemoresponsive liquid crystal elastomers. Sens Actuat B-Chem. 2017;240:511–8.

    Article  CAS  Google Scholar 

  5. Lu XL, Zhang H, Fei GX, Yu B, Tong X, Xia HS, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv Mater. 2018;30:1706597.

    Article  Google Scholar 

  6. Li JJ, Zhou X, Liu ZF. Recent advances in photoactuators and their applications in intelligent bionic movements. Adv Opt Mater. 2020;8:202000886.

    Google Scholar 

  7. Ge F, Yang R, Tong X, Camerel F, Zhao Y. A multifunctional dye-doped liquid crystal polymer actuator: light-guided transportation, turning in locomotion, and autonomous motion. Angew Chem Int Ed. 2018;57:11758–63.

    Article  CAS  Google Scholar 

  8. Wei W, Zhang Z, Wei J, Li X, Guo J. Phototriggered selective actuation and self-oscillating in dual-phase liquid crystal photonic actuators. Adv Opt Mater. 2018;6:1800131.

    Article  Google Scholar 

  9. Yang Y, Zhan W, Peng R, He C, Pang X, Shi D, et al. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv Mater. 2015;27:6376–81.

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Liu Y, Lo C-W, Jiang H. Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter. 2011;7:7511–6.

    Article  CAS  Google Scholar 

  11. Li Z, Yang Y, Wang Z, Zhang X, Chen Q, Qian X, et al. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. J Mater Chem A. 2017;5:6740–6.

    Article  Google Scholar 

  12. Liang JJ, Xu YF, Huang Y, Zhang L, Wang Y, Ma YF, et al. Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C. 2009;113:9921–7.

    Article  CAS  Google Scholar 

  13. Kumar KSS, Biju R, Nair CPR. Progress in shape memory epoxy resins. React Funct Polym. 2013;73:421–30.

    Article  Google Scholar 

  14. Li YZ, Pruitt C, Rios O, Wei LQ, Rock M, Keum JK, et al. Controlled shape memory behavior of a smectic main-chain liquid crystalline elastomer. Macromolecules. 2015;48:2864–74.

    Article  CAS  Google Scholar 

  15. Saed MO, Terentjev EM. Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Sci Rep. 2020;10:6609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crivello JV, Liu SS. Photoinitiated cationic polymerization of epoxy alcohol monomers. J Polym Sci Pol Chem. 2000;38:389–401.

    Article  CAS  Google Scholar 

  17. Wang T, Chen JW, Li ZQ, Wan PY. Several ferrocenium salts as efficient photoinitiators and thermal initiators for cationic epoxy polymerization. J Photochem Photobiol A. 2007;187:389–94.

    Article  CAS  Google Scholar 

  18. Wang T, Li Z, Zhang Y, Lu M. Synthesis and photoactivity of novel cationic photoinitiators: (η6-Diphenylmethane) (η5-cyclopentadienyl) iron hexafluorophosphate and (η6-benzophenone) (η5-cyclopentadienyl) iron hexafluorophosphate. Prog Org Coat. 2009;65:251–6.

    Article  CAS  Google Scholar 

  19. Chen Y, Jia XQ, Wang MQ, Wang T. A synergistic effect of a ferrocenium salt on the diaryliodonium salt-induced visible-light curing of bisphenol-A epoxy resin. RSC Adv. 2015;5:33171–6.

    Article  CAS  Google Scholar 

  20. Beringer FM, Drexler M, Gindler EM, Lumpkin CC. Diaryliodonium salts .1. Synthesis. J Am Chem Soc. 1953;75:2705–8.

    Article  CAS  Google Scholar 

  21. Beringer FM, Falk RA, Karniol M, Lillien I, Masullo G, Mausner M, et al. Diaryliodonium salts .9. The synthesis of substituted diphenyliodonium salts. J Am Chem Soc. 1959;81:342–51.

    Article  CAS  Google Scholar 

  22. Sadafule DS, Raghuraman RN, Navale NG, Kumbhar CG, Panda SP. A photocrosslinkable vinyl polyester. J Macromol Sci-Chem. 2006;25:121–6.

    Article  Google Scholar 

  23. Belmonte A, Lama GC, Gentile G, Fernandez-Francos X, De la Flor S, Cerruti P, et al. Synthesis and characterization of liquid-crystalline networks: toward autonomous shape-memory actuation. J Phys Chem C. 2017;121:22403–14.

    Article  CAS  Google Scholar 

  24. Miao JT, Ge M, Peng S, Zhong J, Li Y, Weng Z, et al. Dynamic imine bond-based shape memory polymers with permanent shape reconfigurability for 4D printing. ACS Appl Mater Interfaces. 2019;11:40642–51.

    Article  CAS  PubMed  Google Scholar 

  25. Garra P, Graff B, Schrodj G, Morlet-Savary F, Dietlin C, Fouassier J-P, et al. Ultrafast epoxy–amine photopolyaddition. ACS Macromol. 2018;51:10230–6.

    Article  CAS  Google Scholar 

  26. Yang J, Tao LM, Cao PR, Yang ZH, Zhang XR, Wang QH, et al. Biphenyl containing shape memory epoxy resin with post-heating adjustable properties. Macromol Mater Eng. 2021;306:2100185.

  27. Chen G-K, Wu K, Zhang Q, Shi Y-c, Lu M-G. Dual-responsive shape memory and thermally reconfigurable reduced graphene oxide-vitrimer composites. Macromol Res. 2019;27:526–33.

    Article  Google Scholar 

  28. Kamaraj M, Dodson EA, Datta S. Effect of graphene on the properties of flax fabric reinforced epoxy composites. Adv Compos Mater. 2019;29:443–58.

    Article  Google Scholar 

  29. Fan YH, Yu SW, Wang HM, Yao YH, Wang Y, Wang CH. Study on preparation and properties of graphene reinforced epoxy resin composites. IOP Conf Ser: Mater Sci Eng 2019;634:012044.

    Article  CAS  Google Scholar 

  30. Yu XJ, Zhou SB, Zheng XT, Guo T, Xiao Y, Song BT. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology. 2009;20:235702.

    Article  PubMed  Google Scholar 

  31. Xie T, Xiao XC. Self-peeling reversible dry adhesive system. Chem Mater. 2008;20:2866–8.

    Article  CAS  Google Scholar 

  32. Chen L, Li WB, Liu YJ, Leng JS. Nanocomposites of epoxy-based shape memory polymer and thermally reduced graphite oxide: Mechanical, thermal and shape memory characterizations. Compos Part B-Eng. 2016;91:75–82.

    Article  CAS  Google Scholar 

  33. Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature. 2001;410:447–50.

    Article  CAS  PubMed  Google Scholar 

  34. Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science. 2011;334:965–8.

    Article  CAS  PubMed  Google Scholar 

  35. Cao Y, Zhang JT, Zhang DD, Lv Y, Li J, Xu YT, et al. A novel shape memory-assisted and thermo-induced self-healing boron nitride/epoxy composites based on Diels-Alder reaction. J Mater Sci. 2020;55:11325–38.

    Article  CAS  Google Scholar 

  36. Chakma P, Konkolewicz D. Dynamic covalent bonds in polymeric materials. Angew Chem Int Ed. 2019;58:9682–95.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (51935012, 52005481), Key Research Program of Frontier Science, Chinese Academy of Science (QYZDJ-SSW-SLH056), One-Three-Five Strategic Planning of Chinese Academy of Sciences, and Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB24).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Heming Luo or Yaoming Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Gong, J., Tao, L. et al. Reconfigurable and NIR-responsive shape memory polymer containing bipheunit units and graphene. Polym J 54, 697–705 (2022). https://doi.org/10.1038/s41428-021-00609-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00609-5

This article is cited by

Search

Quick links