Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology

This article has been updated

Abstract

Bacterial cellulose (BC) has been utilized as a biopolymer matrix for various applications. The advancement of synthetic biology has brought new approaches for its production and functionalization. In this mini-review, we briefly discuss the conventional methods to improve BC production and functionalization, and their challenges. We summarize the application of synthetic biology to address these challenges and its use to develop novel hybrid living materials. Finally, we consider the opportunities and future prospects of synthetic biology in bioengineered materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 03 March 2022

    Duplicated reference was removed.

References

  1. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005;44:3358–93. https://doi.org/10.1002/anie.200460587.

    Article  CAS  PubMed  Google Scholar 

  2. Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose fermentative production and applications. Food Technol Biotechnol 2009;47:107–24.

    CAS  Google Scholar 

  3. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl. 2011;50:5438–66. https://doi.org/10.1002/anie.201001273.

    Article  CAS  PubMed  Google Scholar 

  4. Iguchi M, Yamanaka S, Budhiono A. Review bacterial cellulose- a masterpiece of nature’s art. J Mater Sci. 2000;35:261–70.

    Article  CAS  Google Scholar 

  5. Lee KY, Buldum G, Mantalaris A, Bismarck A. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci. 2014;14:10–32. https://doi.org/10.1002/mabi.201300298.

    Article  CAS  PubMed  Google Scholar 

  6. Festucci-Buselli RA, Otoni WC, Joshi CP. Structure, organization, and functions of cellulose synthase complexes in higher plants. Brazillian J Plant Physiol. 2007;19:1–13.

  7. Esa F, Tasirin SM, Rahman NA. Overview of bacterial cellulose production and application. Agric Agric Sci Proced. 2014;2:113–9. https://doi.org/10.1016/j.aaspro.2014.11.017.

    Article  Google Scholar 

  8. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. Microbial cellulose–the natural power to heal wounds. Biomaterials. 2006;27:145–51. https://doi.org/10.1016/j.biomaterials.2005.07.035.

    Article  CAS  PubMed  Google Scholar 

  9. Shah J, Brown RM Jr. Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol. 2005;66:352–5. https://doi.org/10.1007/s00253-004-1756-6.

    Article  CAS  PubMed  Google Scholar 

  10. Keshk SMAS. Bacterial cellulose production and its industrial applications. J Bioprocessing Biotechniques. 2014;04. https://doi.org/10.4172/2155-9821.1000150.

  11. Shezad O, Khan S, Khan T, Park JK. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym. 2010;82:173–80. https://doi.org/10.1016/j.carbpol.2010.04.052.

    Article  CAS  Google Scholar 

  12. Microbial products: technologies, applications and global markets. https://www.bccresearch.com/market-research/biotechnology/microbial-products-technologies-applications-and-global-markets-report.html.

  13. Klemm D, Emily DC, Fischer D, Gama M, Kedzior AA, Kralisch D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today. 2018;21:720–48. https://doi.org/10.1016/j.mattod.2018.02.001.

    Article  CAS  Google Scholar 

  14. Gilbert C, Tang TC, Ott W, Dorr BA, Shaw WM, Sun LG, et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat Mater. 2021;20:691–700. https://doi.org/10.1038/s41563-020-00857-5.

    Article  CAS  PubMed  Google Scholar 

  15. Tang TC, An B, Huang Y, Vasikaran S, Wang Y, Jiang X, et al. Materials design by synthetic biology. Nat Rev Mater. 2021;6:332–50. https://doi.org/10.1038/s41578-020-00265-w.

    Article  CAS  Google Scholar 

  16. Zakeri B. Synthetic biology: a new tool for the trade. Chembiochem. 2015;16:2277–82. https://doi.org/10.1002/cbic.201500372.

    Article  CAS  PubMed  Google Scholar 

  17. Florea M, Hagemann H, Santosa G, Abbott J, Micklem NC, Spencer-Milnes X, et al. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci USA. 2016;113:E3431–40. https://doi.org/10.1073/pnas.1522985113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tran P, Prindle A. Synthetic biology in biofilms: tools, challenges, and opportunities. Biotechnol Prog. 2021:e3123. https://doi.org/10.1002/btpr.3123.

  19. Hu W, Chen S, Yang J, Li Z, Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym. 2014;101:1043–60. https://doi.org/10.1016/j.carbpol.2013.09.102.

    Article  CAS  PubMed  Google Scholar 

  20. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94. https://doi.org/10.1039/c0cs00108b.

    Article  CAS  PubMed  Google Scholar 

  21. Jacek P, Ryngajllo M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol. 2019;103:5339–53. https://doi.org/10.1007/s00253-019-09846-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Florea M, Reeve B, Abbott J, Freemont PS, Ellis T. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582. Sci Rep. 2016;6:23635. https://doi.org/10.1038/srep23635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cannon RE, Anderson SM. Biogenesis of bacterial cellulose. Crit Rev Microbiol. 1991;17:435–47. https://doi.org/10.3109/10408419109115207.

    Article  CAS  PubMed  Google Scholar 

  24. Yamanaka S, Sugiyama J. Structural modification of bacterial. Cellul Cellul. 2000;7:213–25. https://doi.org/10.1023/A:1009208022957.

    Article  CAS  Google Scholar 

  25. Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010;8:578–92. https://doi.org/10.1038/nrmicro2354.

    Article  CAS  PubMed  Google Scholar 

  26. Basu A, Vadanan SV, Lim S. A novel platform for evaluating the environmental impacts on bacterial cellulose production. Sci Rep. 2018;8:5780. https://doi.org/10.1038/s41598-018-23701-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schramm M, Hestrin S. Factors affecting production of cellulose at the air/ liquid interface of a culture of acetobacter xylinum. Microbiology. 1954;11:123–9. https://doi.org/10.1099/00221287-11-1-123.

    Article  CAS  Google Scholar 

  28. Hornung M, Ludwig M, Gerrard AM, Schmauder HP. Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng Life Sci. 2006;6:537–45. https://doi.org/10.1002/elsc.200620162.

    Article  CAS  Google Scholar 

  29. Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng. 1999;88:183–8. https://doi.org/10.1016/S1389-1723(99)80199-6.

    Article  CAS  PubMed  Google Scholar 

  30. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F. Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotechnol Biochem. 2014;59:1498–502. https://doi.org/10.1271/bbb.59.1498.

    Article  Google Scholar 

  31. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci. 1989;24:3141–5. https://doi.org/10.1007/BF01139032.

    Article  CAS  Google Scholar 

  32. Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol. 2007;34:483–9. https://doi.org/10.1007/s10295-007-0218-4.

    Article  CAS  PubMed  Google Scholar 

  33. Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol. 2003;86:215–9. https://doi.org/10.1016/S0960-8524(02)00176-1.

    Article  PubMed  Google Scholar 

  34. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol. 2009;107:576–83. https://doi.org/10.1111/j.1365-2672.2009.04226.x.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol. 2008;57:449–53. https://doi.org/10.1007/s00284-008-9228-3.

    Article  CAS  PubMed  Google Scholar 

  36. Ishihara M, Matsunaga M, Hayashi N, Tišler V. Utilization of d-xylose as carbon source for production of bacterial cellulose. Enzym Microb Technol. 2002;31:986–91. https://doi.org/10.1016/S0141-0229(02)00215-6.

    Article  CAS  Google Scholar 

  37. Pourramezan GZ, Roayaei AM, Qezelbash QR. Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnology. 2009;8:150–4.

    Article  CAS  Google Scholar 

  38. Coban EP, Biyik H. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr J Biotechnol. 2011;10:46. https://doi.org/10.5897/AJB10.1693.

    Article  Google Scholar 

  39. Hirai A, Tsuji M, Horii F. Culture conditions producing structure entities composed of Cellulose I and II in bacterial cellulose. Cellulose. 1997;4:239–45. https://doi.org/10.1023/a:1018439907396.

    Article  CAS  Google Scholar 

  40. Zeng X, Liu J, Chen J, Wang Q, Li Z, Wang H. Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J Ind Microbiol Biotechnol. 2011;38:1993–9. https://doi.org/10.1007/s10295-011-0989-5.

    Article  CAS  PubMed  Google Scholar 

  41. Hutchens SA, Leon RV, O’Neill HM, Evans BR. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. Lett Appl Microbiol. 2007;44:175–80. https://doi.org/10.1111/j.1472-765X.2006.02055.x.

    Article  CAS  PubMed  Google Scholar 

  42. Aloni Y, Delmer DP, Benziman M. Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci USA. 1982;79:6448–52. https://doi.org/10.1073/pnas.79.21.6448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in Bacteria. Microbiol Rev. 1991;55:35–58.

    Article  CAS  Google Scholar 

  44. Basu A, Vadanan SV, Lim S. Rational design of a scalable bioprocess platform for bacterial cellulose production. Carbohydr Polym. 2019;207:684–93. https://doi.org/10.1016/j.carbpol.2018.10.085.

    Article  CAS  PubMed  Google Scholar 

  45. Xie H, Du H, Yang X, Si C. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci. 2018;2018:1–25. https://doi.org/10.1155/2018/7923068.

    Article  CAS  Google Scholar 

  46. Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq. 2010;156:76–81. https://doi.org/10.1016/j.molliq.2010.04.016.

    Article  CAS  Google Scholar 

  47. Xiong B, Zhao P, Hu K, Zhang L, Cheng G. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose. 2014;21:1183–92. https://doi.org/10.1007/s10570-014-0221-7.

    Article  CAS  Google Scholar 

  48. Shanshan G, Jianqing W, Zhengwei J. Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym. 2012;87:1020–5. https://doi.org/10.1016/j.carbpol.2011.06.040.

    Article  CAS  Google Scholar 

  49. Jin H, Zha C, Gu L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res. 2007;342:851–8. https://doi.org/10.1016/j.carres.2006.12.023.

    Article  CAS  PubMed  Google Scholar 

  50. Pham TTH, Vadanan SV, Lim S. Enhanced rheological properties and conductivity of bacterial cellulose hydrogels and aerogels through complexation with metal ions and PEDOT/PSS. Cellulose. 2020;27:8075–86. https://doi.org/10.1007/s10570-020-03284-6.

    Article  CAS  Google Scholar 

  51. Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8:3276–8. https://doi.org/10.1021/bm700624p.

    Article  CAS  PubMed  Google Scholar 

  52. Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Shelton, WA: ITT Rayonier Inc.; 1983.

  53. Wang S, Cheng Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci. 2009;113:1270–5. https://doi.org/10.1002/app.30072.

    Article  CAS  Google Scholar 

  54. Yates MR, Barlow CY. Life cycle assessments of biodegradable, commercial biopolymers—a critical review. 2013;78:54–66.

  55. Figueiredo ARP, Vilela C, Neto CP, Silvestre AJD, Freire CSR. Bacterial cellulose-based nanocomposites—roadmap for innovative materials. Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, USA: Scrivener Publishing. 2014:17–62. https://doi.org/10.1002/9781118872246.ch2.

  56. Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym. 2013;98:1585–98. https://doi.org/10.1016/j.carbpol.2013.08.018.

    Article  CAS  PubMed  Google Scholar 

  57. Yan Z, Chen S, Wang H, Wang B, Jiang J. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym. 2008;74:659–65. https://doi.org/10.1016/j.carbpol.2008.04.028.

    Article  CAS  Google Scholar 

  58. Zhu W, Li W, He Y, Duan T. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci. 2015;338:22–6. https://doi.org/10.1016/j.apsusc.2015.02.030.

    Article  CAS  Google Scholar 

  59. Müller D, Cercená R, Gutiérrez Aguayo AJ, Porto LM, Rambo CR, Barra GMO. Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J Mater Sci Mater Electron. 2016;27:8062–7. https://doi.org/10.1007/s10854-016-4804-y.

    Article  CAS  Google Scholar 

  60. Müller D, Mandelli JS, Marins AJ, Soares BG, Porto LM, Rambo CR, et al. Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose. 2012;19:1645–54. https://doi.org/10.1007/s10570-012-9754-9.

    Article  CAS  Google Scholar 

  61. Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met. 2011;161:106–11. https://doi.org/10.1016/j.synthmet.2010.11.005.

    Article  CAS  Google Scholar 

  62. Ruka DR, Simon GP, Dean KM. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym. 2013;92:1717–23. https://doi.org/10.1016/j.carbpol.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  63. Saibuatong O-a, Phisalaphong M. Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym. 2010;79:455–60. https://doi.org/10.1016/j.carbpol.2009.08.039.

    Article  CAS  Google Scholar 

  64. Cheng K-C, Catchmark JM, Demirci A. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose. 2009;16:1033–45. https://doi.org/10.1007/s10570-009-9346-5.

    Article  CAS  Google Scholar 

  65. Jiang Y, Yu G, Zhou Y, Liu Y, Feng Y, Li J, et al. Effects of sodium alginate on microstructural and properties of bacterial cellulose nanocrystal stabilized emulsions. Colloids Surf A Physicochemical Eng Asp. 2020;607:125474. https://doi.org/10.1016/j.colsurfa.2020.125474.

    Article  CAS  Google Scholar 

  66. de Lima Fontes M, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, et al. Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym. 2018;179:126–34. https://doi.org/10.1016/j.carbpol.2017.09.061.

    Article  CAS  PubMed  Google Scholar 

  67. Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, Allain JP, et al. Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp. 2016. https://doi.org/10.3791/52951.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials. 2006;27:4661–70. https://doi.org/10.1016/j.biomaterials.2006.04.032.

    Article  CAS  PubMed  Google Scholar 

  69. Ul-Islam M, Shah N, Ha JH, Park JK. Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng. 2011;28:1736–43. https://doi.org/10.1007/s11814-011-0042-4.

    Article  CAS  Google Scholar 

  70. Cai ZJ, Yang G. Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci. 2011;120:2938–44. https://doi.org/10.1002/app.33318.

    Article  CAS  Google Scholar 

  71. Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, Faria-Tischer PC. Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol. 2014;67:401–8. https://doi.org/10.1016/j.ijbiomac.2014.03.047.

    Article  CAS  PubMed  Google Scholar 

  72. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, et al. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C. 2008;28:515–8. https://doi.org/10.1016/j.msec.2007.05.001.

    Article  CAS  Google Scholar 

  73. Barud HS, Tercjak A, Gutierrez J, Viali WR, Nunes ES, Ribeiro SJL, et al. Biocellulose-based flexible magnetic paper. J Appl Phys. 2015;117:17B734. https://doi.org/10.1063/1.4917261.

    Article  CAS  Google Scholar 

  74. Pourreza N, Golmohammadi H, Naghdi T, Yousefi H. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron. 2015;74:353–9. https://doi.org/10.1016/j.bios.2015.06.041.

    Article  CAS  PubMed  Google Scholar 

  75. Mi Y, Wen L, Wang Z, Cao D, Zhao H, Zhou Y, et al. Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal Today. 2016;262:141–5. https://doi.org/10.1016/j.cattod.2015.08.019.

    Article  CAS  Google Scholar 

  76. Ul-Islam M, Khan T, Park JK. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr Polym. 2012;89:1189–97. https://doi.org/10.1016/j.carbpol.2012.03.093.

    Article  CAS  PubMed  Google Scholar 

  77. Iqbal HM, Kyazze G, Tron T, Keshavarz T. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation. Carbohydr Polym. 2014;113:131–7. https://doi.org/10.1016/j.carbpol.2014.07.003.

    Article  CAS  PubMed  Google Scholar 

  78. Wang F, Kim HJ, Park S, Kee CD, Kim SJ, Oh I-K, et al. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci Technol. 2016;128:33–40. https://doi.org/10.1016/j.compscitech.2016.03.012.

    Article  CAS  Google Scholar 

  79. Wang B, Zhang HR, Huang C, Xiong L, Luo J, Chen X-D. Mechanical and rheological properties of isotactic polypropylene/bacterial cellulose composites. Polym Korea. 2017;41:460–4. https://doi.org/10.7317/pk.2017.41.3.460.

    Article  CAS  Google Scholar 

  80. Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering bacterial cellulose by synthetic biology. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21239185.

  81. Saxena IM, Kudlicka K, Okuda K, Brown RM Jr. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol. 1994;176:5735–52. https://doi.org/10.1128/jb.176.18.5735-5752.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, et al. Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci USA. 1999;96:14–8. https://doi.org/10.1073/pnas.96.1.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chien LJ, Chen HT, Yang PF, Lee CK. Enhancement of cellulose pellicle production by constitutively expressing vitreoscilla hemoglobin in Acetobacter xylinum. Biotechnol Prog. 2006;22:1598–603. https://doi.org/10.1021/bp060157g.

    Article  CAS  PubMed  Google Scholar 

  84. Battad-Bernardo E, McCrindle SL, Couperwhite I, Neilan BA. Insertion of anE. coli lacZgene inAcetobacter xylinusfor the production of cellulose in whey. FEMS Microbiol Lett. 2004;231:253–60. https://doi.org/10.1016/s0378-1097(04)00007-2.

    Article  CAS  PubMed  Google Scholar 

  85. Kawano S, Tajima K, Kono H, Erata T, Munekata M, Takai M. Effects of endogenous endo-β-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769. J Biosci Bioeng. 2002;94:275–81. https://doi.org/10.1016/s1389-1723(02)80162-1.

    Article  CAS  PubMed  Google Scholar 

  86. Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, et al. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng. 2005;99:415–22. https://doi.org/10.1263/jbb.99.415.

    Article  CAS  PubMed  Google Scholar 

  87. Fang J, Kawano S, Tajima K, Kondo T. In vivo curdlan/cellulose bionanocomposite synthesis by genetically modified gluconacetobacter xylinus. Biomacromolecules. 2015;16:3154–60. https://doi.org/10.1021/acs.biomac.5b01075.

    Article  CAS  PubMed  Google Scholar 

  88. Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL, et al. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol. 2010;76:6257–65. https://doi.org/10.1128/AEM.00698-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Moradi M, Jacek P, Farhangfar A, Guimaraes JT, Forough M. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: a review. Int J Biol Macromol. 2021;183:635–50. https://doi.org/10.1016/j.ijbiomac.2021.04.173.

    Article  CAS  PubMed  Google Scholar 

  90. Teh MY, Ooi KH, Danny Teo SX, Bin Mansoor ME, Shaun Lim WZ, Tan MH, et al. An expanded synthetic biology toolkit for gene expression control in acetobacteraceae. ACS Synth Biol. 2019;8:708–23. https://doi.org/10.1021/acssynbio.8b00168.

    Article  CAS  PubMed  Google Scholar 

  91. Walker KT, Goosens VJ, Das A, Graham AE, Ellis T. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. Micro Biotechnol. 2019;12:611–9. https://doi.org/10.1111/1751-7915.13340.

    Article  CAS  Google Scholar 

  92. Huang LH, Liu QJ, Sun XW, Miao L, Jia SR, Xie YY, et al. Tailoring bacterial cellulose structure through CRISPR interference-mediated downregulation of galU in Komagataeibacter xylinus CGMCC 2955. Biotechnol Bioeng. 2020;117:2165–76. https://doi.org/10.1002/bit.27351.

    Article  CAS  PubMed  Google Scholar 

  93. Hur DH, Choi WS, Kim TY, Lee SY, Park JH, Jeong KJ. Enhanced production of bacterial cellulose in komagataeibacter xylinus via tuning of biosynthesis genes with synthetic RBS. J Microbiol Biotechnol. 2020;30:1430–5. https://doi.org/10.4014/jmb.2006.06026.

    Article  CAS  PubMed  Google Scholar 

  94. Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12:381–90. https://doi.org/10.1038/nrmicro3239.

    Article  CAS  PubMed  Google Scholar 

  95. Gao M, Li J, Bao Z, Hu M, Nian R, Feng D. A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun. 2019;10:437. https://doi.org/10.1038/s41467-018-07879-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu J, Huang TR, Lim ZH, Luo R, Pasula RR, Liao LD. Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing. Adv Health Mater. 2016;5:2983–92. https://doi.org/10.1002/adhm.201600898.

    Article  CAS  Google Scholar 

  97. Yu J, Sun G, Lin NW, Vadanan SV and Lim S, Chen CH. Intelligent optofluidic analysis for ultrafast single bacterium profiling of cellulose production and morphology. Lab Chip. 2020;20:626–33. https://doi.org/10.1039/c9lc01105f.

    Article  CAS  PubMed  Google Scholar 

  98. Kappel T, Anken RH. The tea-mushroom. Mycologist. 1993;7:12–3. https://doi.org/10.1016/s0269-915x(09)80616-2.

    Article  Google Scholar 

  99. Seto A, Saito Y, Matsushige M, Kobayashi H, Sasaki Y, Tonouchi N, et al. Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Appl Microbiol Biotechnol. 2006;73:915–21. https://doi.org/10.1007/s00253-006-0515-2.

    Article  CAS  PubMed  Google Scholar 

  100. Liu K, Catchmark JM. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions. Carbohydr Polym. 2019;219:12–20. https://doi.org/10.1016/j.carbpol.2019.04.071.

    Article  CAS  PubMed  Google Scholar 

  101. Liu K, Catchmark JM. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system. Bioresour Technol. 2019;290:121715. https://doi.org/10.1016/j.biortech.2019.121715.

    Article  CAS  PubMed  Google Scholar 

  102. Ding R, Hu S, Xu M, Hu Q, Jiang S, Xu K, et al. The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha. Carbohydr Polym. 2021;252:117137. https://doi.org/10.1016/j.carbpol.2020.117137.

    Article  CAS  PubMed  Google Scholar 

  103. Birnbaum DP, Manjula-Basavanna A, Kan A, Tardy BL, Joshi NS. Hybrid living capsules autonomously produced by engineered bacteria. Adv Sci. 2021;8:1–11. https://doi.org/10.1002/advs.202004699.

  104. Gunduz G, Kiziltas EE, Kiziltas A, Gencer A, Aydemir D and Asik N. Production of bacterial cellulose fibers in the presence of effective microorganism. J Nat Fibers. 2018;16:567–75. https://doi.org/10.1080/15440478.2018.1428847.

    Article  Google Scholar 

  105. Fijałkowski K, Peitler D, Rakoczy R, Żywicka A. Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT Food Sci Technol. 2016;68:322–8. https://doi.org/10.1016/j.lwt.2015.12.038.

    Article  CAS  Google Scholar 

  106. Manjula-Basavanna A, Duraj-Thatte AM, Joshi NS. Robust self-regeneratable stiff living materials fabricated from microbial cells. Adv Funct Mater. 2021;31. https://doi.org/10.1002/adfm.202010784.

  107. Gilbert C, Ellis T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth Biol. 2019;8:1–15. https://doi.org/10.1021/acssynbio.8b00423.

    Article  CAS  PubMed  Google Scholar 

  108. Chen AY, Zhong C, Lu TK. Engineering living functional materials. ACS Synth Biol. 2015;4:8–11. https://doi.org/10.1021/sb500113b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bae S, Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog. 2008;20:1366–71. https://doi.org/10.1021/bp0498490.

    Article  CAS  Google Scholar 

  110. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol. 2002;29:189–95. https://doi.org/10.1038/sj.jim.7000303.

    Article  CAS  PubMed  Google Scholar 

  111. Keshk S, Sameshima K. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol. 2006;72:291. https://doi.org/10.1007/s00253-005-0265-6.

    Article  CAS  PubMed  Google Scholar 

  112. Fang L, Catchmark JM. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr Polym. 2015;115:663–9. https://doi.org/10.1016/j.carbpol.2014.09.028.

    Article  CAS  PubMed  Google Scholar 

  113. Czaja WK, Young DJ, Kawecki M, Brown RM Jr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8:1–12. https://doi.org/10.1021/bm060620d.

    Article  CAS  PubMed  Google Scholar 

  114. Kalia S, Dufresne A, Cherian MB, Kaith BS, Avérous L, Njuguna J, et al. Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci. 2011;2011:1–35. https://doi.org/10.1155/2011/837875.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the Asian Office of Aerospace Research and Development (AOARD) Grant (#FA2386-19-1-4060) and National Research Foundation, Singapore, under its Competitive Research Programme (Award#NRF-CRP22-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anindya Basu or Sierin Lim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadanan, S.V., Basu, A. & Lim, S. Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology. Polym J 54, 481–492 (2022). https://doi.org/10.1038/s41428-021-00606-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00606-8

This article is cited by

Search

Quick links