Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TEMPO-catalyzed oxidation of polysaccharides

Abstract

2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO)-catalyzed oxidation enables efficient and position-selective conversion of primary hydroxy groups in water-soluble and water-insoluble polysaccharides to sodium carboxylate groups under mild conditions in water. TEMPO/NaBr/NaClO in water at pH 10 is an advantageous system in terms of the degrees of oxidation and reaction rates. TEMPO and NaBr behave as catalysts, and NaClO acts as the primary oxidant. However, oxidative depolymerization that is caused by the presence of NaBr and NaClO and the occurrence of side reactions on the polysaccharide molecules are unavoidable during oxidation. An alternative system is 4-acetamido-TEMPO/NaClO/NaClO2 in pH 5–7 buffer at 35–60 °C for 1–3 d, in which catalytic amounts of TEMPO and NaClO are used with NaClO2 as the primary oxidant. This oxidation system significantly inhibits depolymerization and yields oxidized products that contain no aldehydes. Various new water-soluble TEMPO-oxidized polysaccharides that contain significant amounts of sodium carboxylate groups have been prepared by TEMPO-catalyzed oxidation, and they have unique properties and functionalities. When crystalline native cellulose and chitin are oxidized by the TEMPO/NaBr/NaClO system under suitable conditions, the obtained water-insoluble oxidized products can be converted to various characteristic nanomaterials by mechanical disintegration in water, depending on the oxidation and disintegration conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Izydorczyk MS, Biliaders CG. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym. 1995;28:33–48.

    Article  CAS  Google Scholar 

  2. Kim UJ, Kuga S, Wada M, Okano T, Kondo T. Periodate oxidation of crystalline cellulose. Biomacromolecules. 2000;1:488–92.

    Article  CAS  PubMed  Google Scholar 

  3. de Nooy AEJ, Besemer AC, van Bekkum H. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res. 1995;269:89–98.

    Article  Google Scholar 

  4. de Nooy AEJ, Besemer AC, van Bekkum H, van Dijk JAPP, Smit JAM. TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains. Macromolecules. 1996;29:6541–7.

    Article  Google Scholar 

  5. Trombotto S, Violet-Courtens E, Cottier L, Queneau Y. Oxidation of two major disaccharides: sucrose and isomaltulose. Top Catal. 2004;27:31–7.

    Article  CAS  Google Scholar 

  6. Bragd PL, van Bekkum H, Besemer AC. TEMPO-mediated oxidation of oxidation of polysaccharides: Survey of methods and applications. Top Catal. 2004;27:49–65.

    Article  CAS  Google Scholar 

  7. Tavernier ML, Delattre C, Petit E. Michaud P. β-(1,4)-Polyglucuronic acids—An overview. Open Biotechnol J. 2008;2:73–86.

    Article  CAS  Google Scholar 

  8. Ponedel’kina IY, Khaibrakhmanova EA, Odinokov VN. Nitroxide-catalyzed selective oxidation of alcohols and polysaccharides. Russ Chem Rev. 2010;79:63–75.

    Article  Google Scholar 

  9. Elboutachfaiti R, Delattre C, Petit E, Michaud P. Polyglucuronic acids: Structures, functions and degrading enzymes. Carbohydr Polym. 2011;84:1–13.

    Article  CAS  Google Scholar 

  10. Pierre G, Punta C, Delattre C, Melone L, Dubessay P, Fiorati A, et al. TEMPO-mediated oxidation of polysaccharides: an ongoing story. Carbohydr Polym. 2017;165:71–85.

    Article  CAS  PubMed  Google Scholar 

  11. Isogai A, Hänninen T, Saito T, Fujisawa S. Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci. 2018;86:122–48.

    Article  CAS  Google Scholar 

  12. Shinoda R, Saito T, Okita Y, Isogai A. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules. 2012;13:842–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mishra SP, Manent AS, Chabot B, Daneault C. The use of sodium chlorite in post-oxidation of TEMPO-oxidized pulp: Effect on pulp characteristics and nanocellulose yield. J Wood Chem Technol. 2012;32:137–48.

    Article  CAS  Google Scholar 

  14. Takaichi S, Saito T, Tanaka R, Isogai A. Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water. Cellulose. 2014;21:4093–103.

    Article  CAS  Google Scholar 

  15. Takaichi T, Isogai A. Oxidation of wood cellulose using 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO catalyst in NaBr/NaClO system. Cellulose. 2013;20:1979–88.

    Article  CAS  Google Scholar 

  16. Tamura N, Wada M, Isogai A. TEMPO-mediated oxidation of (1→3)-β-D-glucans. Carbohydr Polym. 2009;77:300–5.

    Article  CAS  Google Scholar 

  17. Hirota M, Tamura N, Saito T, Isogai A. Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym. 2009;78:330–5.

    Article  CAS  Google Scholar 

  18. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules. 2009;10:1992–6.

    Article  CAS  PubMed  Google Scholar 

  19. Tamura N, Hirota M, Saito T, Isogai A. Oxidation of curdlan and other polysaccharides by 4-acetamide-TEMPO/NaClO/NaClO2 under acid conditions. Carbohydr Polym. 2010;81:592–8.

    Article  CAS  Google Scholar 

  20. Ye W, Hu Y, Ma H, Liu L, Yu J, Fan Y. Comparison of cast films and hydrogels based on chitin nanofibers prepared using TEMPO/NaBr/NaClO and TEMPO/NaClO/NaClO2 systems. Carbohydr Polym. 2020;237:116125.

    Article  CAS  PubMed  Google Scholar 

  21. Xu S, Song Z, Qian X, Shen J. Introducing carboxyl and aldehyde groups to softwood-derived cellulosic fibers by laccase/TEMPO-catalyzed oxidation. Cellulose. 2013;20:2371–8.

    Article  CAS  Google Scholar 

  22. Pei J, Yin Y, Shen Z, Bu X, Zhang F. Oxidation of primary hydroxyl groups in chitooligomer by a laccase-TEMPO system and physico-chemical characterisation of oxidation products. Carbohydr Polym. 2016;135:234–8.

  23. Yu Y, Wang Q, Yuan J, Fan X, Wang P. A novel approach for grafting of β-cyclodextrin onto wool via laccase/TEMPO oxidation. Carbohydr Polym. 2016;153:463–70.

    Article  CAS  PubMed  Google Scholar 

  24. Parikka K, Nikkiä I, Pitkänen L, Ghafar A, Sontag-Strohm T. Laccase/TEMPO oxidation in the production of mechanically strong arabinoxylan and glucomannan aerogels. Carbohydr Polym. 2017;175:377–86.

    Article  CAS  PubMed  Google Scholar 

  25. Isogai T, Saito T, Isogai A. TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromolecules. 2010;11:1593–9.

    Article  CAS  PubMed  Google Scholar 

  26. Isogai T, Saito T, Isogai A. Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose. 2011;18:421–31.

    Article  CAS  Google Scholar 

  27. Isogai A, Kato Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose. 1998;4:153–64.

    Article  Google Scholar 

  28. Tahiri C, Vignon M. TEMPO-oxidation of cellulose: synthesis and characterization of polyglucuronans. Cellulose. 2000;7:177–88.

    Article  CAS  Google Scholar 

  29. da Silva Perez D, Montanari S, Vignon MR. TEMPO-mediated oxidation of cellulose III. Biomacromolecules. 2003;4:1417–25.

    Article  PubMed  Google Scholar 

  30. Isogai T, Yanagisawa M, Isogai A. Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose. 2009;16:117–27.

    Article  CAS  Google Scholar 

  31. Zang K, Fischer S, Geissler A, Brendler E. Analysis of carboxylate groups in oxidized never-dried cellulose II catalyzed by TEMPO and 4-acetamide-TEMPO. Carbohydr Polym. 2012;87:894–900.

    Article  Google Scholar 

  32. Tang Z, Li W, Lin X, Xiao H, Miao Q, Huang L, et al. TEMPO-oxidized cellulose with high degree of oxidation. Polym-Basel. 2017;9:421.

    Google Scholar 

  33. Kato Y, Habu N, Yamaguchi J, Kobayashi Y, Shibata I, Isogai A, et al. Biodegradation of β−1,4-linked polyglucuronic acid (cellouronic acid). Cellulose. 2002;9:75–81.

    Article  CAS  Google Scholar 

  34. Konno N, Ishida T, Igarashi K, Fushinobu S, Samejima M, Isogai A. Crystal structure of polysaccharide lyase family 20 endo-β−1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. FEBS Lett. 2009;583:1323–6.

    Article  CAS  PubMed  Google Scholar 

  35. Takaichi S, Hiraoki R, Inamochi T, Isogai A. One-step preparation of sodium 2,3,6-tricarboxylate cellulose. Carbohydr Polym. 2014;110:499–504.

    Article  CAS  PubMed  Google Scholar 

  36. Parks EJ, Hebert RL. Thermal analysis of ion exchange reaction products of wood pulps with calcium and aluminum cations. TAPPI J. 1972;55:1510–4.

    CAS  Google Scholar 

  37. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.

    Article  CAS  PubMed  Google Scholar 

  38. Isogai A. Nanocelluloses: Fundamentals and applications of new bio-based nanomaterials. J Wood Sci. 2013;59:449–59.

    Article  CAS  Google Scholar 

  39. Isogai A. Review: development of completely dispersed cellulose nanofibers. Proc Jpn Acad Ser B. 2018;94:161–79.

    Article  CAS  Google Scholar 

  40. Isogai A, Zhou Y. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: nanonetworks, nanofibers, and nanocrystals. Curr Opin Solid St M. 2019;23:101–6.

    Article  CAS  Google Scholar 

  41. Isogai A. Emerging nanocellulose technologies: recent developments. Adv Mater. 2021;33:2000630.

    Article  CAS  Google Scholar 

  42. Li T, Chen C, Brozena AH, Zhu JY, Xu L, Driemeier C, et al. Fibrillated cellulose nanotechnologies: competitive performance beyond sustainability. Nature. 2021;590:47–56.

    Article  CAS  PubMed  Google Scholar 

  43. Okita Y, Saito T, Isogai A. TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung. 2009;63:529–35.

    Article  CAS  Google Scholar 

  44. Okita Y, Saito T, Isogai A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules. 2010;11:1696–700.

    Article  CAS  PubMed  Google Scholar 

  45. Li L, Zhao S, Zhang Z, Hu H, Kim JK. TEMPO-mediated oxidation of MCC at high temperature: Synthesis and characterization of high-hydrophilic polymer. Fiber Polym. 2012;13:1–7.

    Article  Google Scholar 

  46. Puangsin B, Yang Q, Saito T, Isogai A. Comparative characterization of cellulose nanofibril films prepared from non-wood celluloses by TEMPO-mediated oxidation. Int J Biol Macromol. 2013;59:208–13.

    Article  CAS  PubMed  Google Scholar 

  47. Li L, Zhao S, Zhen J, Zhang ZX, Hu H, Xin Z, et al. TEMPO-mediated oxidation of microcrystalline cellulose: Influence of temperature and oxidation procedure on yields of water-soluble products and crystal structures of water-insoluble residues. Fiber Polym. 2013;14:352–7.

    Article  CAS  Google Scholar 

  48. Kuramae R, Saito T, Isogai A. TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React Funct Polym. 2015;85:126–33.

    Article  Google Scholar 

  49. Hiraoki R, Ono Y, Saito T, Isogai A. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Biomacromolecules. 2015;16:675–81.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Y, Saito T, Bergström L, Isogai A. Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules. 2018;19:633–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, Ono Y, Takeuchi M, Isogai A. Changes to the contour length, molecular chain length, and solid-state structures of nanocellulose resulting from sonication in water. Biomacromolecules. 2020;21:2346–55.

    Article  CAS  PubMed  Google Scholar 

  52. Ono Y, Takeuchi M, Zhou Y, Isogai A. TEMPO/NaBr/NaClO and NaBr/NaClO oxidations of cotton linters and ramie celluloses. Cellulose. 2021;28:6035–49.

    Article  CAS  Google Scholar 

  53. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules. 2009;10:1992–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka R, Saito T, Isogai A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol. 2012;51:228–34.

    Article  CAS  PubMed  Google Scholar 

  55. Jaušovec D, Vogrinčič R, Kokol V. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym. 2015;116:74–85.

    Article  PubMed  Google Scholar 

  56. Jiang J, Ye W, Liu L, Wang Z, Fan Y, Saito T, et al. Cellulose nanofibers prepared by TEMPO/laccase/O2 system. Biomacromolecules. 2017;18:288–94.

    Article  CAS  PubMed  Google Scholar 

  57. Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P. Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohydr Polym. 2009;77:791–8.

    Article  CAS  Google Scholar 

  58. Hirota M, Tamura N, Saito T, Isogai A. Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose. 2010;17:279–88.

    Article  CAS  Google Scholar 

  59. Hirota M, Tamura N, Saito T, Isogai A. Cellulose II nanocrystals prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation. Cellulose. 2011;19:435–42.

    Article  Google Scholar 

  60. Milanovic J, Schiehser S, Milanovic P, Potthast A, Kostic M. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers. Carbohydr Polym. 2013;98:444–50.

    Article  CAS  PubMed  Google Scholar 

  61. Funahashi R, Okita Y, Hondo H, Zhao M, Saito T, Isogai A. Different conformations of surface cellulose molecules in native cellulose microfibrils revealed by layer-by-layer peeling. Biomacromolecules. 2018;18:3687–94.

    Article  Google Scholar 

  62. Ono Y, Fukui S, Funahashi R, Isogai A. Relationship of distribution of carboxy groups to molar mass distribution of TEMPO-oxidized algal, cotton, and wood cellulose nanofibrils. Biomacromolecules. 2019;20:4026–34.

    Article  CAS  PubMed  Google Scholar 

  63. Ono Y, Nakamura Y, Zhou Y, Horikawa Y, Isogai A. Linear and branched structures present in high-molar-mass fractions in holocelluloses prepared from chara, haircap moss, adiantum, ginkgo, Japanese cedar, and eucalyptus. Cellulose. 2021;28:3935–49.

    Article  CAS  Google Scholar 

  64. Hirota M, Furihata K, Saito T, Kawada T, Isogai A. Glucose/glucuronic acid alternating copolysaccharide prepared from TEMPO-oxidized native celluloses by surface-peeling. Angew Chem Int Ed. 2010;49:7670–2.

    Article  CAS  Google Scholar 

  65. Kitaoka T, Isogai A, Onabe F. Chemical modification of pulp fibers by TEMPO-mediated oxidation. Nord Pulp Pap Res J. 1999;14:274–9.

    Article  Google Scholar 

  66. Yui Y, Tanaka C, Isogai A. Functionalization of cotton fabrics by TEMPO-mediated oxidation. Sen’i Gakkaishi. 2013;69:222–8.

    Article  CAS  Google Scholar 

  67. Tanaka C, Yui Y, Isogai A. TEMPO-mediated oxidation of cotton cellulose fabrics under weakly acidic or neutral conditions. Sen’i Gakkaishi. 2015;71:191–6.

    Article  CAS  Google Scholar 

  68. Tanaka C, Yui Y, Isogai A. TEMPO-mediated oxidation of cotton cellulose fabrics with sodium dichloroisocyanurate. J Fiber Sci Technol. 2016;72:172–8.

    Article  Google Scholar 

  69. Wakabayashi M, Fujisawa S, Saito T, Isogai A. Nanocellulose film properties tunable by controlling degree of fibrillation of TEMPO-oxidized cellulose. Front Chem. 2020;8:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kato Y, Kaminaga J, Matsuo R, Isogai A. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym. 2004;58:421–6.

    Article  CAS  Google Scholar 

  71. Sun L, Du Y, Yang J, Shi X, Li J, Wang X, et al. Conversion of crystal structure of the chitin to facilitate preparation of a 6-carboxychitin. Carbohydr Polym. 2006;66:168–75.

    Article  CAS  Google Scholar 

  72. Bordenave N, Grelier S, Coma V. Advances on selective C-6 oxidation of chitosan by TEMPO. Biomacromolecules. 2008;9:2377–82.

    Article  CAS  PubMed  Google Scholar 

  73. Fan Y, Saito T, Isogai A. Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules. 2008;9:192–8.

    Article  CAS  PubMed  Google Scholar 

  74. Fan Y, Fukuzumi H, Saito T, Isogai A. Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol. 2012;50:69–76.

    Article  CAS  PubMed  Google Scholar 

  75. Pierre G, Salah R, Gardarin C, Traikia M, Petit E, Delort AM, et al. Enzymatic degradation and bioactivity evaluation of C-6 oxidized chitosan. Int J Biol Macromol. 2013;60:383–92.

    Article  CAS  PubMed  Google Scholar 

  76. Sun X, Zhu J, Gu Q, You Y. Surface-modified chitin by TEMPO-mediated oxidation and adsorption of Cd(III). Colloid Surf A. 2018;555:103–10.

    Article  CAS  Google Scholar 

  77. Jiang J, Ye W, Yu J, Fan Y, Ono Y, Saito T, et al. Preparation of chitin nanocrystals using the O2/laccase/TEMPO system. Carbohydr Polym. 2018;189:178–83.

    Article  CAS  PubMed  Google Scholar 

  78. Ye W, Hu Y, Ma H, Liu L, Yu J, Fan Y. Comparison of cast films and hydrogels based on chitin nanofibers prepared using TEMPO/NaBr/NaClO and TEMPO/NaClO/NaClO2 systems. Carbohydr Polym. 2020;237:116125.

    Article  CAS  PubMed  Google Scholar 

  79. Delattre C, Rios L, Laroche C, Le NHT, Lecerf D, Picton L, et al. Production and characterization of new families of polyglucuronic acids from TEMPO-NaOCl oxidation of curdlan. Int J Biol Macromol. 2009;45:458–62.

    Article  CAS  PubMed  Google Scholar 

  80. Watanabe E, Tamura N, Saito T, Habu N, Isogai A. Preparation of completely C6-carboxylated curdlan by catalytic oxidation with 4-acetamido-TEMPO. Carbohydr Polym. 2014;100:74–9.

    Article  CAS  PubMed  Google Scholar 

  81. Yan JK, Ma HL, Cai PF, Zhang HN, Zhang Q, Hu NZ, et al. Structural characteristics and antioxidant activities of different families of 4-acetamido-TEMPO-oxidised curdlan. Food Chem. 2014;143:530–5.

    Article  CAS  PubMed  Google Scholar 

  82. Yan JK, Pei JJ, Ma HL, Wang ZB. Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan. Carbohydr Polym. 2015;121:64–70.

    Article  CAS  PubMed  Google Scholar 

  83. Tang R, Hao J, Zong R, Wu F, Zeng Y, Zhang Z. Oxidation pattern of curdlan with TEMPO-mediated system. Carbohydr Polym. 2018;186:91–6.

    Article  Google Scholar 

  84. Kato Y, Matsuo R, Isogai A. Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym. 2003;51:69–75.

    Article  CAS  Google Scholar 

  85. Hao J, Wu F, Tang R, Sun Y, Liu D, Zhang Z. Preparation of 1,4-linked α-D-glucuronans from starch with 4-acetamide-TEMPO/NaClO2/NaClO system. Int J Biol Macromol. 2020;151:740–6.

    Article  CAS  PubMed  Google Scholar 

  86. Yui T, Uto T, Nakauchida T, Yamamoto K, Kadokawa J. Double helix formation from non-natural amylose analog polysaccharides. Carbohydr Polym. 2018;189:184–9.

    Article  CAS  PubMed  Google Scholar 

  87. Fraschini C, Vignon MR. Selective oxidation of primary alcohol groups of β-cyclodextrin mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). Carbohydr Res. 2000;328:585–9.

    Article  CAS  PubMed  Google Scholar 

  88. Yu Y, Wang Q, Yuan J, Fan X, Wang P. A novel approach for grafting of β-cyclodextrin onto wool via laccase/TEMPO oxidation. Carbohydr Polym. 2016;153:463–70.

    Article  CAS  PubMed  Google Scholar 

  89. Jiang B, Drouet E, Milas M, Rinaudo M. Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics. Carbohydr Res. 2000;327:455–61.

    Article  CAS  PubMed  Google Scholar 

  90. Sierakowski MR, Milas M, Desbrires J, Rinaudo M. Specific modifications of galactomannans. Carbohydr Polym. 2000;42:51–7.

    Article  CAS  Google Scholar 

  91. Sakakibara CN, Sierakowski MR, Lucyszyn N, Freitas RA. TEMPO-mediated oxidation on galactomannan: Gal/Man ratio and chain flexibility dependence. Carbohydr Polym. 2016;153:371–8.

    Article  CAS  PubMed  Google Scholar 

  92. Parikka K, Nikkiä I, Pitkänen L, Ghafar A, Sontag-Strohm T. Laccase/TEMPO oxidation in the production of mechanically strong arabinoxylan and glucomannan aerogels. Carbohydr Polym. 2017;175:377–86.

    Article  CAS  PubMed  Google Scholar 

  93. Elboutachfaiti R, Petit E, Beuvian C, Courtois B, Coutois J, Delattre C. Development of new ulvan-like polymer by regioselective oxidation of gellan exopolysaccharide using TEMPO reagent. Carbohydr Polym. 2010;80:485–90.

    Article  Google Scholar 

  94. Elboutachfati R, Petit E, Pillon M, Coutois B, Courtois J, Delattre C. Evaluation of antioxidant capacity of ulvan-like polymer obtained by regioselective oxidation of gellan exopolysaccharide. Food Chem. 2011;127:976–83.

    Article  Google Scholar 

  95. Su Y, Chu B, Gao Y, Wu C, Zhang L, Chen P, et al. Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness. Carbohydr Polym. 2013;92:2245–51.

    Article  CAS  PubMed  Google Scholar 

  96. Pereira JM, Mahoney M, Edgar KJ. Synthesis of amphiphilic 6-carboxypullulan ethers. Carbohydr Polym. 2014;100:65–73.

    Article  CAS  PubMed  Google Scholar 

  97. Spatareanu A, Bercea M, Budtova T, Harabagiu V, Sacarescu L, Coseri S, et al. Synthesis, characterization and solution behavior of oxidized pullulan. Carbohydr Polym. 2014;111:63–71.

    Article  CAS  PubMed  Google Scholar 

  98. Coseri S, Bercea M, Harabagiu V, Budtova T. Oxidation vs. degradation in polysaccharides: Pullulan – A case study. Eur Polym J 2016;85:82–91.

    Article  CAS  Google Scholar 

  99. Delattre C, Pierre G, Gardarin C, Traikia M, Elboutachfaiti R, Isogai A, et al. Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohydr Polym. 2015;116:34–41.

    Article  CAS  PubMed  Google Scholar 

  100. Demuth T, Boulos S, Nyström L. Structural investigation of oxidized arabinoxylan oligosaccharides by negative ionization HILIC-qToF-MS. Analyst. 2020;145:6691–704.

    Article  CAS  PubMed  Google Scholar 

  101. Pandeirada CO, Merkx DWH, Janssen HG, Westphal Y, Schols HA. TEMPO/NaClO2/NaClO oxidation of arabinoxylans. Carbohydr Polym. 2021;259:117781.

    Article  CAS  PubMed  Google Scholar 

  102. dos Santos-Fidencio GC, Gonçalves AG, Noseda MD, Duarte MER, Ducatti DRB. Effects of carboxyl group on the anticoagulant activity of oxidized carrageenans. Carbohydr Polym. 2019;214:286–93.

    Article  PubMed  Google Scholar 

  103. Jin W, He X, Wu W, Bao Y, Wang S, Cai M, et al. Structural analysis of a glucoglucuronan derived from laminarin and the mechanisms of its anti-lung cancer activity. Int J Biol Macromol. 2020;163:776–87.

    Article  CAS  PubMed  Google Scholar 

  104. Spier VC, Sierakowski MR, Reed WF, de Freitas RA. Polysaccharide depolymerization from TEMPO-catalysis: Effect of TEMPO concentration. Carbohydr Polym. 2017;170:140–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isogai, A. TEMPO-catalyzed oxidation of polysaccharides. Polym J 54, 387–402 (2022). https://doi.org/10.1038/s41428-021-00580-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00580-1

This article is cited by

Search

Quick links