Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Supramolecular organogel of polyureas containing POSS units in the main chain: dependence on the POSS and comonomer structures

Abstract

para-Substituted bis(3-aminopropyl)hexaisobutyl-cage octasilsesquioxane (T8 cage) (1) was polymerized with several diisocyanates; methylenediphenyl 4,4’-diisocyanate (2a), 4,4’-diisocyanato-3,3’-dimethylbiphenyl (2b), m-xylene diisocyanate (2c), 1,3-bis(isocyanatomethyl)cyclohexane (2d), tolylene-2,4-diisocyanate (2e), and tolylene-2,6-diisocyanate (2f), at room temperature to prepare T8-polyureas (3). Gel formation was observed immediately during the addition of 2 to the solution of 1 when above the critical gel concentrations (Cgs). T8-polyureas with phenylurea moieties, 3a, 3b, 3e, and 3f, promoted organogel formation in comparison with T8-polyureas with nonphenylurea moieties, 3c and 3d. The substitution of methyl groups at the ortho position of the phenylurea groups provided lower Cgs. FT-IR analysis suggests that increasing the intermolecular hydrogen bonding between the ureido groups in T8-polyurea enhanced the organogel formation. We also studied the POSS structure-dependent properties of the polyureas, in which the T8 cages were replaced by double-decker-shaped phenyl-substituted silsesquioxane (DDSQ) units. Polymerization was conducted at various concentrations, and it was found that no organogels were formed below the solubility limit of the monomers except when 2f was used. This observation suggests that the polyureas containing the isobutyl-substituted T8 units promoted organogel formation in comparison with those containing DDSQ units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97:3133–59.

    Article  CAS  Google Scholar 

  2. Suzuki M, Hanabusa K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev. 2010;39:455–63.

    Article  CAS  Google Scholar 

  3. Weiss RG. The past, present, and future of molecular gels. What is the status of the field, and where is it going. J Am Chem Soc. 2014;136:7519–30.

    Article  CAS  Google Scholar 

  4. Lan Y, Corradini MG, Weiss RG, Raghavan SR, Rogers MA. To gel or not to gel: correlating molecular gelation with solvent parameters. Chem Soc Rev. 2013;44:6035–58.

    Article  Google Scholar 

  5. Hanabusa K, Suzuki M. Development of low-molecular-weight gelators and polymer-based gelators. Polym J. 2014;46:776–82.

    Article  CAS  Google Scholar 

  6. Seitz ME, Burghardt WR, Faber KT, Shull KR. Self-assembly and stress relaxation in acrylic-triblock copolymer gels. Macromolecules. 2007;40:1218–26.

    Article  CAS  Google Scholar 

  7. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  Google Scholar 

  8. Laine RM. Nanobuilding blocks base on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem. 2005;15:3725–44.

    Article  CAS  Google Scholar 

  9. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  10. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–46.

    Article  CAS  Google Scholar 

  11. Jung JH, Laine RM. Beads on a chain (BOC) polymers formed from the reaction of [NH2PhSiO1.5]x[PhSiO1.5]10-x and [NH2PhSiO1.5]x[PhSiO1.5]12-x mixtures (x = 2-4) with the diglycidyl ether of bisphenol A. Macromolecules. 2011;44:7263–72.

    Article  CAS  Google Scholar 

  12. Seino M, Hayakawa T, Ishida Y, Kakimoto M, Watanabe K, Oikawa H. Hydrosilylation polymerization of double-decker-shaped silisesquioxane having hydrosilane with diynes. Macromolecules. 2006;39:3773–5.

    Google Scholar 

  13. Wu S, Hayakawa T, Kikuchi R, Grunzinger SJ, Kakimoto M, Oikawa H. Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules. 2007;40:5698–705.

    Article  CAS  Google Scholar 

  14. Yoshimatsu M, Komori K, Ohnagamitsu Y, Sueyoshi N, Kawashima N, Chinen S, et al. Necklace-shaped dimethylsiloxane polymers bearing a polyhedral oligomeric silsesquioxane cage prepared by polycondensation and ring-opening polymerization. Chem Lett. 2012;41:622–4.

    Article  CAS  Google Scholar 

  15. Hoque MA, Kakihana Y, Shinke S, Kawakami Y. Polysiloxanes with periodically distributed isomeric double-decker silsesquioxane in the main chain. Macromolecules. 2009;42:3309–15.

    Article  CAS  Google Scholar 

  16. Maegawa T, Irie Y, Imoto H, Fueno H, Tanaka K, Naka K. para-Bisvinylhexaisobutyl-substituted T8 caged monomer: synthesis and hydrosilylation polymerization. Polym Chem. 2015;6:7500–4.

    Article  CAS  Google Scholar 

  17. Maegawa T, Irie Y, Fueno H, Tanaka K, Naka K. Synthesis and polymerization of a para-disubstituted T8-cages hexaisobutyl-POSS monomer. Chem Lett. 2014;43:1532–4.

    Article  CAS  Google Scholar 

  18. Maegawa T, Miyashita O, Irie Y, Imoto H, Naka K. Synthesis and properties of polyimides containing hexaisobutyl-substituted T8 cages in their main chains. RSC Adv. 2016;6:31751–7.

    Article  CAS  Google Scholar 

  19. Fujii S, Minami S, Urayama K, Suenaga Y, Naito H, Miyashita O, et al. Beads-on-string-shaped poly(azomethine) applied for solution processing of bilayer devices using a same solvent. ACS Macro Lett. 2018;7:641–5.

    Article  CAS  Google Scholar 

  20. Shi H, Yang J, You M, Li Z, He C. Polyhedral oligomeric silsesquioxanes (POSS)-based hybrid soft gels: Molecular design, material advantages, and emerging applications. ACS Mater Lett. 2020;2:296–316.

    Article  CAS  Google Scholar 

  21. Kilic D, Balta DK, Saloglu D, Temel G. Synthesis and characterization of POSS hybrid organogels using Menschutkin quaternization chemistry. Polym Int. 2019;68:369–76.

    Article  CAS  Google Scholar 

  22. Qin Z, Qu B, Yuan L, Yu X, Li J, Wang J, et al. Injectable shear-thinning hydrogels with enhanced strength and temperature stability based on polyhedral oligomeric silsesquioxane end-group aggregation. Polym Chem. 2017;8:1607–10.

    Article  CAS  Google Scholar 

  23. Wang L, Zeng K, Zheng S. Hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide) telechelics and behavior of physical hydrogels. ACS Appl Mater Inter. 2011;3:898–909.

    Article  CAS  Google Scholar 

  24. Zhou W, Shi J, Yuan S, Chen Y. Crystallization and shear-induced formation of organogels in novel poly[(butylene succinate)-co-diolisobutyl]-[polyhedral oligomeric silsesquioxane] copolyesters. Polym Int. 2014;63:626–32.

    Article  CAS  Google Scholar 

  25. Ishida A, Fujii S, Sumida A, Kamitani T, Minami S, Urayama K, et al. Supramolecular organogel formation behaviors of beads-on-string shaped poly(azomethine)s dependent on POSS structures in the main chains. Polym Chem. 2012;12:3169–76.

    Article  Google Scholar 

  26. Hashimoto M, Imoto H, Matsukawa K, Naka K. Coexistence of optical transparency, hydrophobicity, and high thermal conductivity in beads-on-string-shaped polyureas induced by disordered hydrogen-bond networks. Macromolecules. 2020;53:2874–81.

    Article  CAS  Google Scholar 

  27. Yokoya M, Kimura S, Yamanaka M. Urea derivatives as functional molecules: Supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chem Eur J. 2021;27:5601–14.

    Article  CAS  Google Scholar 

  28. Yamanaka M. Urea derivatives as low-molecular-weight gelotors. J Incl Phenom Macrocycl Chem. 2013;77:33–48.

    Article  CAS  Google Scholar 

  29. Waddon AJ, Coughlin EB. Crystal structure of polyhedral oligomeric silsesquioxane (POSS) nano-materials: A study by x-ray diffraction and electgron microscopy. Chem Mater. 2003;15:4555–2561.

    Article  CAS  Google Scholar 

  30. Coleman MM, Sobkowiak M, Pehlert GJ, Painter PC. Infrared temperature studies of a simple polyurea. Macromol Chem Phys. 1997;198:117–36.

    Article  CAS  Google Scholar 

  31. Mattia J, Painter P. A comparison of hydrogen bonding and order in a polyurethane and poly(Urethane-urea) and their blends with poly(ethylene glycol). Macromolecules. 2007;40:1546–54.

    Article  CAS  Google Scholar 

  32. Bergsman DS, Closser RG, Tassone CJ, Clemens BM, Nordlund D, Bent SF. Effect of backbone chemistry on the structure of polyurea films deposited by molecular layer deposition. Chem Mater. 2017;29:1192–203.

    Article  CAS  Google Scholar 

  33. Isare B, Pembouong G, Boué F, Bouteiller L. Conformational control of hydrogen-bonded aromatic bis-ureas. Langmuir. 2012;28:7535–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 19H02764) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamitani, T., Ishida, A., Imoto, H. et al. Supramolecular organogel of polyureas containing POSS units in the main chain: dependence on the POSS and comonomer structures. Polym J 54, 161–167 (2022). https://doi.org/10.1038/s41428-021-00578-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00578-9

This article is cited by

Search

Quick links