Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Production technology and applications of honeycomb films

Abstract

“Breath figure formation” during the casting process of polymer solutions under high atmospheric humidity provides honeycomb-patterned polymer films (honeycomb films) with regularly arranged micropores. The development of production technology for large-area honeycomb films is indispensable for their various applications. Manufacturing equipment consisting of three zones (for casting, humidification, and drying of polymer solutions) for successive formation of large-area honeycomb films was newly designed and constructed. By using this equipment, physicochemical experimental parameters, e.g., the surface temperature of polymer solutions, dew point of the humidification zone, humidification time, and interfacial tension between water and the polymer solution, were effectively changed to optimize the density and size of condensed water droplets. Large-area honeycomb films were formed by a roll-to-roll process. Herein, recent developments in biomedical applications of honeycomb films are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature. 2000;404:53–6.

    Article  CAS  PubMed  Google Scholar 

  2. Hu XB, Li GT, Li MH, Huang J, Li Y, Gao YB, et al. Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Adv Funct Mater. 2008;18:575–83.

    Article  CAS  Google Scholar 

  3. Gates B, Yin YD, Xia YN. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. Chem Mater. 1999;11:2827–36.

    Article  CAS  Google Scholar 

  4. Erdogan B, Song LL, Wilson JN, Park JO, Srinivasarao M, Bunz UHF. Permanent bubble arrays from a cross-linked poly (para- phenyleneethynylene): picoliter holes without microfabrication. J Am Chem Soc. 2004;126:3678–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yabu H, Takebayashi M, Tanaka M, Shimomura M. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir. 2005;21:3235–7.

    Article  CAS  PubMed  Google Scholar 

  6. Fukuhira Y, Ito M, Kaneko H, Sumi Y, Tanaka M, Yamamoto S, et al. Prevention of postoperative adhesions by honeycomb-patterned poly(lactide) film in a rat experimental model. J Biomed Mater PART B Appl Biomater. 2008;86:353–9.

    Article  Google Scholar 

  7. Ishihata H, Tanaka M, Iwata N, Ara M, Shimonishi M, Nagamine M, et al. Proliferation of periodontal ligament cells on biodegradable honeycomb film scaffold with unified micropore organization. J Biomech Sci Eng. 2010;10:252–61.

    Article  Google Scholar 

  8. Schmid H, Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules. 2000;33:3042–9.

    Article  CAS  Google Scholar 

  9. Aitken J. Breath figures. Proc R Soc Edinb. 1895;20:94–7.

    Article  Google Scholar 

  10. Rayleigh L. Breath figures. Nature. 1911;86:416–7.

    Article  Google Scholar 

  11. Terada T. Physical problems in everyday life. In: Komiya T, editor. Iwanami bunko. Terada Torahiko collected essays Vol. 3 (Iwanamibunko) Tokyo: Iwanami Shoten, Publishers; 1948. p. 15–22.

  12. Widawski G, Rawiso M, François B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature. 1994;369:387–9.

    Article  CAS  Google Scholar 

  13. Maruyama N, Koito T, Nishida J, Sawadaishi T, Cieren X, Ijiro K, et al. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films. 1998;327-329:854–6.

    Article  CAS  Google Scholar 

  14. Stenzel MH. Formation of regular honeycomb-patterned porous film by self-organization. Aust J Chem. 2002;55:239–43.

    Article  CAS  Google Scholar 

  15. Bunz UHF. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater. 2006;18:973–89.

    Article  CAS  Google Scholar 

  16. Hoa MLK, Lu M, Zhang Y. Preparation of porous materials with ordered hole structure. Adv Colloid Interface Sci. 2006;121:9–23.

    Article  CAS  PubMed  Google Scholar 

  17. Stenzel MH, Barner-Kowollik C, Davis TP. Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures. J Polym Sci, Part A: Polym Chem. 2006;44:2363–75.

    Article  CAS  Google Scholar 

  18. Ma HM, Hao JC. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings. Chem Soc Rev. 2011;40:5457–71.

    Article  CAS  PubMed  Google Scholar 

  19. Escale P, Rubatat L, Billon L, Save M. Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur Polym J. 2012;48:1001–25.

    Article  CAS  Google Scholar 

  20. Hernandez-Guerrero M, Stenzel MH. Honeycomb structured polymer films via breath figures. Polym Chem. 2012;3:563–77.

    Article  CAS  Google Scholar 

  21. Bai H, Du C, Zhang AJ, Li L. Breath figure arrays: unconventional fabrications, functionalizations, and applications. Angew Chem, Int Ed. 2013;52:12240–55.

    Article  CAS  Google Scholar 

  22. Muñoz-Bonilla A, Fernández-García M, Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog Polym Sci. 2014;39:510–54.

    Article  Google Scholar 

  23. Wan LS, Zhu LW, Ou Y, Xu ZK. Multiple interfaces in self-assembled breath figures. Chem Commun. 2014;50:4024–39.

    Article  CAS  Google Scholar 

  24. Zhang A, Bai H, Li L. Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev. 2015;115:9801–68.

    Article  CAS  PubMed  Google Scholar 

  25. Yabu H. Fabrication of honeycomb films by the breath figure technique and their applications. Sci Tech Adv Mater. 2018;19:802–22.

    Article  CAS  Google Scholar 

  26. Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr.Opin. Colloid Interface Sci. 2001;6:11–6.

  27. Iwanaga H, Shiratsuchi K, Yamazaki H. Fujifilm Research & Development. No. 54, 38–42. Fujifilm Value from Innovation;2009.

  28. Elder KR, Katakowski M, Haataja M, Grant M. Modeling elasticity in crystal growth. Phys Rev Lett. 2002;88:245701-1–245701-4.

    Article  Google Scholar 

  29. Elder KR, Grant M. Modeling elastic and plastic deformation in nonequilibrium processing using phasefield crystals. Phys Rev E. 2004;70:051605-1–-051605-18.

    Article  Google Scholar 

  30. Kohashi S, Takaki T, Nishida H. Numerical simulation of self-organized honeycomb-pattern; Ascht 2015 The Asian Symposium on Computational Heat Transfer and Fluid Flow; 2015 June 21–24. Busan, Korea.

  31. Nishida H, Kohashi S, Tanaka M. Construction of seamless immersed boundary phase-field method. Comput Fluids. 2018;164:41–9.

    Article  Google Scholar 

  32. Nishikawa T, Nishida J, Ookura R, Nishimura S, Wada S, Karino T, Shimomura M. Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Mater Sci Eng. 1999;C8-9:495–500.

    Article  Google Scholar 

  33. Nishikawa T, Nonomura M, Arai K, Hayashi J, Sawadaishi T, Nishiura Y, et al. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir. 2003;19:6193–201.

    Article  CAS  Google Scholar 

  34. Yamazaki H, Ito K, Yabu H, Shimomura M. Formation and control of line defects caused by tectonics of water droplet arrays during self-organized honeycomb-patterned polymer film formation. Soft Matter. 2014;10:2741–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ito K, Yamazaki H. Method for production of honeycomb structure film. Japan patent no. 5405374. 2013.

  36. Tanaka M, Shimomura M, Sakaino Y, Ito T, Terashima K.Method for manufacturring blood filtration film, and filtration method. Japan patent no. 2006–194908 2006.

  37. Yamazaki H, Ito K, Shimomura M, Yabu H. Technological prospect and current industrial trend of biomimetics, Ch. 3. Tokyo: CMC Publishing, 2016. p. 41–50.

  38. Tanaka M, Shimomura M, Sakaino Y, Ito T, Ishii N. Covered stent. Japan patent no. 4526589. 2010.

  39. Tanaka M, Shimomura M, Sakaino Y, Ito T, Toyokawa S. Stent for digestive system. Japan patent no. 4512351. 2010.

  40. Fukuhira Y, Ito M, Kaneko H, Sumi Y, Tanaka M, Yamamoto S, et al. Prevention of postoperative adhesions by a novel honeycomb-patterned poly(lactide) film in a rat experimental model. Biomed Mater Res B Appl Biomater. 2008;86B:353–9.

  41. Okuda T, Higashide T, Fukuhira Y, Sumi Y, Shimomura M, Sugiyama K. J Glaucoma. 2009;18:220–6.

    Article  PubMed  Google Scholar 

  42. Sato K, Tanaka M, Hasebe K, Takebayashi M, Nishikawa K, Kawai T, et al. Preparation of the honeycomb patterned porous film of biodegradable polymer for tissue engineering scaffolds. Int J Nanosci. 2002;1:689–93.

    Article  CAS  Google Scholar 

  43. Lin RZ, Chang HY. Recent advances in three-dimensional multicellularspheroid culture for biomedical research. Biotechnol J. 2008;3:1172–84.

    Article  CAS  PubMed  Google Scholar 

  44. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids. an underestimated tool is catching up again. J Biotechnol. 2010;148:3–15.

    Article  CAS  PubMed  Google Scholar 

  45. Kinney MA, Sargent CY, McDevitt TC. The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Eng Part B. 2011;17:249–62.

    Article  Google Scholar 

  46. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, et al. Formation of multicellularspheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherente nvironments. Exp Cell Res. 1990;186:227–35.

    Article  CAS  PubMed  Google Scholar 

  47. Tong J-Z, Lagausie P-D, Furlan V, Cresteil T, Bernard O, Alvarez F. Long-term culture of adult rat hepatocyte spheroids. Exp Cell Res. 1992;200:326–32.

    Article  CAS  PubMed  Google Scholar 

  48. Abu-Absi SF, Friend JR, Hansen LK, Hu WS. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res. 2002;274:56–67.

    Article  CAS  PubMed  Google Scholar 

  49. Tsuruma A, Tanaka M, Fukushima N, Shimomura M. Morphological changes of neurons in Self-organized honeycomb-patterned films. e-J Surf Sci Nanotechnol. 2005;3:159–64.

    Article  CAS  Google Scholar 

  50. Morita Y, Yamamoto S, Yabu H, Ito E, Honmou O, Ijiro K, et al. Response of mesenchymal stem cells from rat adult bone marrow to honeycomb-patterned porous polymer films. J Surf Sci Soc Jpn. 2010;31:392–9.

    Article  CAS  Google Scholar 

  51. Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. Biomaterials. 2006;7:6032–42.

    Article  Google Scholar 

  52. Sakai Y, Nakazawa K. Technique for the control of spheroid diameter using microfabricated chips. Acta Biomater. 2007;3:1033–40.

    Article  CAS  PubMed  Google Scholar 

  53. Sakai Y, Yoshida S, Yoshiura Y, Mori R, Tamura T, Yahiro K, et al. Effect of microwell chipstructure on cell microsphere production of various animal cells. J Biosci Bioeng. 2010;110:223–9.

    Article  CAS  PubMed  Google Scholar 

  54. Nakazawa K, Yoshiura Y, Koga H, Sakai Y. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes. J Biosci Bioeng. 2013;116:628–33.

    Article  CAS  PubMed  Google Scholar 

  55. Yamazaki H, Yabu H, Shimomura M, Nakazawa K, et al. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film. J Biosci Bioeng. 2014;118:455–60.

    Article  CAS  PubMed  Google Scholar 

  56. Ito K, Kakinuma C, Hikimoto D, Mima S, Nevile CM, Sundback CA. Blood vessel model. U.S. patent no. 20200110075.2020.

  57. Miyoshi H, Naito T, Suehiro T, Hikimoto D, Nishino M, Oba T, et al. Development of blood vessel model by organ-on-chip technology and its application for evaluation of drug induced vascular injury. Poster presented at the 32rd Annual Meeting of the Japanese Society for Alternatives to Animal Experiments. Nov 2019; Tsukuba, Japan.

Download references

Acknowledgements

Parts of these studies were supported by 2004–2005 R&D projects of regional regeneration consortiums commissioned by the Ministry of Economy, Trade and Industry and 2007–2011 R&D projects commissioned by the New Energy and Industrial Technology Development Organization (NEDO) for practical application of nanotechnology and advanced materials. We are deeply grateful to these related departments and stakeholders as well as to Professor Kohji Nakazawa of the University of Kitakyushu, Associate Professor Hiroshi Yabu of Tohoku University, Professor Hidetoshi Nishida, Professor Tomohiro Takagi, and Professor Masashi Yamakawa of Kyoto Institute of Technology, Professor Masaru Tanaka of Kyushu University, Professor Yasutaka Matsuo of Hokkaido University, Associate Professor Yuji Hirai of Chitose Institute of Science and Technology and all those involved for their invaluable support in promoting each research area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Yamazaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, H., Kohashi, S., Ito, K. et al. Production technology and applications of honeycomb films. Polym J 54, 107–120 (2022). https://doi.org/10.1038/s41428-021-00549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00549-0

Search

Quick links