Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis

Abstract

γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med. 2003;198:433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Born WK, Yin Z, Hahn YS, Sun D, O’Brien RL. Analysis of gamma delta T cell functions in the mouse. J Immunol. 2010;184:4055–61.

    Article  CAS  PubMed  Google Scholar 

  3. Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol. 2015;15:683–91.

    Article  CAS  PubMed  Google Scholar 

  4. Papotto PH, Ribot JC, Silva-Santos B. IL-17(+) γδ T cells as kick-starters of inflammation. Nat Immunol. 2017;18:604–11.

    Article  CAS  PubMed  Google Scholar 

  5. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31:331–41.

    Article  CAS  PubMed  Google Scholar 

  6. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–78.

    Article  CAS  PubMed  Google Scholar 

  7. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest. 2010;120:1762–73.

    Article  PubMed  PubMed Central  Google Scholar 

  8. He Q, Lu Y, Tian W, Jiang R, Yu W, Liu Y, et al. TOX deficiency facilitates the differentiation of IL-17A-producing γδ T cells to drive autoimmune hepatitis. Cell Mol Immunol. 2022;19:1102–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ren H, Li W, Liu X, Zhao N. γδ T cells: The potential role in liver disease and implications for cancer immunotherapy. J Leukoc Biol. 2022;112:1663–8.

    Article  CAS  PubMed  Google Scholar 

  10. Ganapathy T, Radhakrishnan R, Sakshi S, Martin S. CAR γδ T cells for cancer immunotherapy. Is the field more yellow than green? Cancer Immunol Immunother. 2023;72:277–86.

    Article  CAS  PubMed  Google Scholar 

  11. Kreslavsky T, Gleimer M, von Boehmer H. Alphabeta versus gammadelta lineage choice at the first TCR-controlled checkpoint. Curr Opin Immunol. 2010;22:185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carpenter AC, Bosselut R. Decision checkpoints in the thymus. Nat Immunol. 2010;11:666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ciofani M, Zúñiga-Pflücker JC. Determining γδ versus αß T cell development. Nat Rev Immunol. 2010;10:657–63.

    Article  CAS  PubMed  Google Scholar 

  14. Ribot JC, Lopes N, Silva-Santos B. γδ T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21:221–32.

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Dimitrion P, Cvetkovski S, Zhou L, Mi QS. Epidermal resident γδ T cell development and function in skin. Cell Mol Life Sci. 2021;78:573–80.

    Article  CAS  PubMed  Google Scholar 

  16. Hamada S, Umemura M, Shiono T, Hara H, Kishihara K, Tanaka K, et al. Importance of murine Vdelta1gammadelta T cells expressing interferon-gamma and interleukin-17A in innate protection against Listeria monocytogenes infection. Immunology. 2008;125:170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao Y, Yang J, Gao YD. Altered expressions of helper T cell (Th)1, Th2, and Th17 cytokines in CD8(+) and γδ T cells in patients with allergic asthma. J Asthma. 2011;48:429–36.

    Article  CAS  PubMed  Google Scholar 

  18. Pang DJ, Neves JF, Sumaria N, Pennington DJ. Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology. 2012;136:283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muñoz-Ruiz M, Ribot JC, Grosso AR, Gonçalves-Sousa N, Pamplona A, Pennington DJ, et al. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. Nat Immunol. 2016;17:721–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buus TB, Ødum N, Geisler C, Lauritsen JPH. Three distinct developmental pathways for adaptive and two IFN-γ-producing γδ T subsets in adult thymus. Nat Commun. 2017;8:1911.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sumaria N, Grandjean CL, Silva-Santos B, Pennington DJ. Strong TCRγδ Signaling Prohibits Thymic Development of IL-17A-Secreting γδ T Cells. Cell Rep. 2017;19:2469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fahl SP, Coffey F, Kain L, Zarin P, Dunbrack RL Jr., Teyton L, et al. Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proc Natl Acad Sci USA. 2018;115:1889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sumaria N, Martin S, Pennington DJ. Developmental origins of murine γδ T-cell subsets. Immunology. 2019;156:299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coffey F, Lee SY, Buus TB, Lauritsen JP, Wong GW, Joachims ML, et al. The TCR ligand-inducible expression of CD73 marks γδ lineage commitment and a metastable intermediate in effector specification. J Exp Med. 2014;211:329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wencker M, Turchinovich G, Di Marco Barros R, Deban L, Jandke A, Cope A, et al. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat Immunol. 2014;15:80–7.

    Article  CAS  PubMed  Google Scholar 

  26. Spidale NA, Sylvia K, Narayan K, Miu B, Frascoli M, Melichar HJ, et al. Interleukin-17-producing γδ T cells originate from SOX13(+) progenitors that are independent of γδTCR signaling. Immunity. 2018;49:857–872.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang K, Blanco DB, Chen X, Dash P, Neale G, Rosencrance C, et al. Metabolic signaling directs the reciprocal lineage decisions of αβ and γδ T cells. Sci Immunol. 2018;3:eaas9818.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang Q, Liu X, Liu Q, Guan Z, Luo J, Cao G, et al. Roles of mTORC1 and mTORC2 in controlling γδ T1 and γδ T17 differentiation and function. Cell Death Differ. 2020;27:2248–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391:184–7.

    Article  CAS  PubMed  Google Scholar 

  30. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38–43.

    Article  CAS  PubMed  Google Scholar 

  31. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.

    Article  CAS  PubMed  Google Scholar 

  32. Setogawa T, Shinozaki-Yabana S, Masuda T, Matsuura K, Akiyama T. The tumor suppressor LKB1 induces p21 expression in collaboration with LMO4, GATA-6, and Ldb1. Biochem Biophys Res Commun. 2006;343:1186–90.

    Article  CAS  PubMed  Google Scholar 

  33. Cao Y, Li H, Liu H, Zheng C, Ji H, Liu X. The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res. 2010;20:99–108.

    Article  CAS  PubMed  Google Scholar 

  34. Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468:701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468:659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468:653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamás P, Macintyre A, Finlay D, Clarke R, Feijoo-Carnero C, Ashworth A, et al. LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol. 2010;40:242–53.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cao Y, Li H, Liu H, Zhang M, Hua Z, Ji H, et al. LKB1 regulates TCR-mediated PLCγ1 activation and thymocyte positive selection. EMBO J. 2011;30:2083–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC, et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol. 2011;187:4187–98.

    Article  CAS  PubMed  Google Scholar 

  40. He N, Fan W, Henriquez B, Yu RT, Atkins AR, Liddle C, et al. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci USA. 2017;114:12542–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu D, Luo Y, Guo W, Niu Q, Xue T, Yang F, et al. Lkb1 maintains T(reg) cell lineage identity. Nat Commun. 2017;8:15876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang K, Blanco DB, Neale G, Vogel P, Avila J, Clish CB, et al. Homeostatic control of metabolic and functional fitness of T(reg) cells by LKB1 signalling. Nature. 2017;548:602–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Poffenberger MC, Metcalfe-Roach A, Aguilar E, Chen J, Hsu BE, Wong AH, et al. LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis. Science. 2018;361:406–11.

    Article  CAS  PubMed  Google Scholar 

  44. Timilshina M, You Z, Lacher SM, Acharya S, Jiang L, Kang Y, et al. Activation of Mevalonate Pathway via LKB1 Is Essential for Stability of T(reg) Cells. Cell Rep. 2019;27:2948–2961.e7.

    Article  CAS  PubMed  Google Scholar 

  45. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9:563–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carling D. The AMP-activated protein kinase cascade–a unifying system for energy control. Trends Biochem Sci. 2004;29:18–24.

    Article  CAS  PubMed  Google Scholar 

  47. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004;101:3329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi J, Petrie HT. Activation kinetics and off-target effects of thymus-initiated cre transgenes. PLoS ONE. 2012;7:e46590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol. 2009;10:427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6:1236–44.

    Article  CAS  PubMed  Google Scholar 

  51. Chen L, He W, Kim ST, Tao J, Gao Y, Chi H, et al. Epigenetic and transcriptional programs lead to default IFN-gamma production by gammadelta T cells. J Immunol. 2007;178:2730–6.

    Article  CAS  PubMed  Google Scholar 

  52. Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dailey MO. Expression of T lymphocyte adhesion molecules: regulation during antigen-induced T cell activation and differentiation. Crit Rev Immunol. 1998;18:153–84.

    Article  CAS  PubMed  Google Scholar 

  54. Argüello RJ, Combes AJ, Char R, Gigan JP, Baaziz AI, Bousiquot E, et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 2020;32:1063–1075.e7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lopes N, McIntyre C, Martin S, Raverdeau M, Sumaria N, Kohlgruber AC, et al. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat Immunol. 2021;22:179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.

    Article  CAS  PubMed  Google Scholar 

  57. Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU, et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad Sci USA. 2014;111:2554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf). 2009;196:65–80.

    Article  CAS  PubMed  Google Scholar 

  59. Göransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem. 2007;282:32549–60.

    Article  PubMed  Google Scholar 

  60. Wang X, Tian Z. γδ T cells in liver diseases. Front Med. 2018;12:262–8.

    Article  CAS  PubMed  Google Scholar 

  61. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.

    Article  CAS  PubMed  Google Scholar 

  62. Zarrouk M, Rolf J, Cantrell DA. LKB1 mediates the development of conventional and innate T cells via AMP-dependent kinase autonomous pathways. PLoS ONE. 2013;8:e60217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pandit M, Timilshina M, Chang JH. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. J Mol Med (Berl). 2021;99:1139–50.

    Article  CAS  PubMed  Google Scholar 

  64. Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol. 2012;12:325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marelli-Berg FM, Fu H, Mauro C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity. Immunology. 2012;136:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Franco F, Jaccard A, Romero P, Yu YR, Ho PC. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2:1001–12.

    Article  CAS  PubMed  Google Scholar 

  67. Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55:14–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramstead AG, Wallace JA, Lee SH, Bauer KM, Tang WW, Ekiz HA, et al. Mitochondrial pyruvate carrier 1 promotes peripheral T cell homeostasis through metabolic regulation of thymic development. Cell Rep. 2020;30:2889–2899.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  CAS  PubMed  Google Scholar 

  70. Rožman P, Švajger U. The tolerogenic role of IFN-γ. Cytokine Growth Factor Rev. 2018;41:40–53.

    Article  PubMed  Google Scholar 

  71. Markle JG, Mortin-Toth S, Wong AS, Geng L, Hayday A, Danska JS. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. J Immunol. 2013;190:5392–401.

    Article  CAS  PubMed  Google Scholar 

  72. Ujiie H, Shevach EM. γδ T cells protect the liver and lungs of mice from autoimmunity induced by scurfy lymphocytes. J Immunol. 2016;196:1517–28.

    Article  CAS  PubMed  Google Scholar 

  73. Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology. 1996;23:988–93.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported by the Natural Science Foundation of China (to M.Y., 82271754 and 82071737; to Z.Y., 32030036; to Q.Y., 32000615; and to P.F., 82301974), the China Postdoctoral Science Foundation (to P.F., 2023M741377), the Guangdong Basic and Applied Basic Research Fund (to Q.Y., 2023A1515012582; to P.F., 2022A1515110217; and to G.C., 2023B1515020018), and the 111 Project (to Z.Y., B16021). We would like to acknowledge Prof. Dr. Xun Sun from China Medical University for generously providing us with anti-TCR-Vγ6 (1C10-1F7) antibodies.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.Y. and Z.Y.; Methodology: Z.X., W.L., S.W., L.L., P.F., Y.S., and J.H.; Visualization: P.F. and Z.X.; Funding acquisition: M.Y.; Project administration: M.Y. and Z.Y.; Supervision: M.Y.; Writing draft: M.Y., Z.X., L.L., and G.C.

Corresponding authors

Correspondence to Zhinan Yin or Meixiang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests. Z.Y. is an editorial board member of Cellular & Molecular Immunology, but he has not been involved in the peer review or the decision-making of the article.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Wang, S., Luo, L. et al. Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis. Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-024-01163-9

Keywords

Search

Quick links