Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unsynchronized butyrophilin molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing

Abstract

Vγ9Vδ2 T cells are specialized effector cells that have gained prominence as immunotherapy agents due to their ability to target and kill cells with altered pyrophosphate metabolites. In our effort to understand how cancer cells evade the cell-killing activity of Vγ9Vδ2 T cells, we performed a comprehensive genome-scale CRISPR screening of cancer cells. We found that four molecules belonging to the butyrophilin (BTN) family, specifically BTN2A1, BTN3A1, BTN3A2, and BTN3A3, are critically important and play unique, nonoverlapping roles in facilitating the destruction of cancer cells by primary Vγ9Vδ2 T cells. The coordinated function of these BTN molecules was driven by synchronized gene expression, which was regulated by IFN-γ signaling and the RFX complex. Additionally, an enzyme called QPCTL was shown to play a key role in modifying the N-terminal glutamine of these BTN proteins and was found to be a crucial factor in Vγ9Vδ2 T cell killing of cancer cells. Through our research, we offer a detailed overview of the functional genomic mechanisms that underlie how cancer cells escape Vγ9Vδ2 T cells. Moreover, our findings shed light on the importance of the harmonized expression and function of gene family members in modulating T-cell activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data needed to evaluate the conclusions in the paper are presented in the paper or the supplementary materials.

References

  1. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science. 1994;264:267–70. https://doi.org/10.1126/science.8146660.

    Article  CAS  PubMed  Google Scholar 

  2. Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol. 2021;18:427–39. https://doi.org/10.1038/s41423-020-0515-7.

    Article  CAS  PubMed  Google Scholar 

  3. Rhodes DA, Reith W, Trowsdale J. Regulation of Immunity by Butyrophilins. Annu Rev Immunol. 2016;34:151–72. https://doi.org/10.1146/annurev-immunol-041015-055435.

    Article  CAS  PubMed  Google Scholar 

  4. Rigau M, Ostrouska S, Fulford TS, Johnson DN, Woods K, Ruan Z, et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by gammadelta T cells. Science. 2020;367:eaay5516 https://doi.org/10.1126/science.aay5516.

    Article  CAS  PubMed  Google Scholar 

  5. Karunakaran MM, Willcox CR, Salim M, Paletta D, Fichtner AS, Noll A, et al. Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vgamma9Vdelta2 TCR and Is Essential for Phosphoantigen Sensing. Immunity. 2020;52:487–498 e486. https://doi.org/10.1016/j.immuni.2020.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, et al. BTN2A1, an immune checkpoint targeting Vgamma9Vdelta2 T cell cytotoxicity against malignant cells. Cell Rep. 2021;36:109359 https://doi.org/10.1016/j.celrep.2021.109359.

    Article  CAS  PubMed  Google Scholar 

  7. Vyborova A, Beringer DX, Fasci D, Karaiskaki F, van Diest E, Kramer L, et al. gamma9delta2T cell diversity and the receptor interface with tumor cells. J Clin Invest. 2020;130:4637–51. https://doi.org/10.1172/JCI132489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willcox CR, Vantourout P, Salim M, Zlatareva I, Melandri D, Zanardo L, et al. Butyrophilin-like 3 Directly Binds a Human Vgamma4(+) T Cell Receptor Using a Modality Distinct from Clonally-Restricted Antigen. Immunity. 2019;51:813–825 e814. https://doi.org/10.1016/j.immuni.2019.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human gammadelta T-cells. Immunol Rev. 2020;298:218–36. https://doi.org/10.1111/imr.12919.

    Article  CAS  PubMed  Google Scholar 

  10. Sandstrom A, Peigne CM, Leger A, Crooks JE, Konczak F, Gesnel MC, et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity. 2014;40:490–500. https://doi.org/10.1016/j.immuni.2014.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsiao CC, Nguyen K, Jin Y, Vinogradova O, Wiemer AJ. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chem Biol. 2022;29:985–995.e985. https://doi.org/10.1016/j.chembiol.2022.01.004.

    Article  CAS  PubMed  Google Scholar 

  12. Laplagne C, Meddour S, Figarol S, Michelas M, Calvayrac O, Favre G, et al. Vgamma9Vdelta2 T Cells Activation Through Phosphoantigens Can Be Impaired by a RHOB Rerouting in Lung Cancer. Front Immunol. 2020;11:1396 https://doi.org/10.3389/fimmu.2020.01396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wada I, Matsushita H, Noji S, Mori K, Yamashita H, Nomura S, et al. Intraperitoneal injection of in vitro expanded Vgamma9Vdelta2 T cells together with zoledronate for the treatment of malignant ascites due to gastric cancer. Cancer Med. 2014;3:362–75. https://doi.org/10.1002/cam4.196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benelli R, Costa D, Salvini L, Tardito S, Tosetti F, Villa F, et al. Targeting of colorectal cancer organoids with zoledronic acid conjugated to the anti-EGFR antibody cetuximab. J Immunother Cancer. 2022;10:e005660 https://doi.org/10.1136/jitc-2022-005660.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdorfer L, et al. Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol. 2017;18:393–401. https://doi.org/10.1038/ni.3686.

    Article  CAS  PubMed  Google Scholar 

  16. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–45. https://doi.org/10.1038/nm.3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Gassart A, Le KS, Brune P, Agaugue S, Sims J, Goubard A, et al. Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vgamma9Vdelta2 T cell-mediated antitumor immune response. Sci Transl Med. 2021;13:eabj0835 https://doi.org/10.1126/scitranslmed.abj0835.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu S, Cao Z, Liu Z, He Y, Wang Y, Yuan P, et al. Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biol. 2019;20:20 https://doi.org/10.1186/s13059-019-1628-0.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108:787–99. https://doi.org/10.1002/jlb.2mr0220-549r.

    Article  CAS  PubMed  Google Scholar 

  20. Uchida R, Ashihara E, Sato K, Kimura S, Kuroda J, Takeuchi M, et al. Gamma delta T cells kill myeloma cells by sensing mevalonate metabolites and ICAM-1 molecules on cell surface. Biochem Biophys Res Commun. 2007;354:613–8. https://doi.org/10.1016/j.bbrc.2007.01.031.

    Article  CAS  PubMed  Google Scholar 

  21. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537–42. https://doi.org/10.1038/nature23477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cazzetta V, Bruni E, Terzoli S, Carenza C, Franzese S, Piazza R, et al. NKG2A expression identifies a subset of human Vδ2 T cells exerting the highest antitumor effector functions. Cell Rep. 2021;37:109871 https://doi.org/10.1016/j.celrep.2021.109871.

    Article  CAS  PubMed  Google Scholar 

  23. Reith W, Mach B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol. 2001;19:331–73. https://doi.org/10.1146/annurev.immunol.19.1.331.

    Article  CAS  PubMed  Google Scholar 

  24. Reith W, Siegrist CA, Durand B, Barras E, Mach B. Function of major histocompatibility complex class II promoters requires cooperative binding between factors RFX and NF-Y. Proc Natl Acad Sci USA. 1994;91:554–8. https://doi.org/10.1073/pnas.91.2.554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Masternak K, Barras E, Zufferey M, Conrad B, Corthals G, Aebersold R, et al. A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat Genet. 1998;20:273–7. https://doi.org/10.1038/3081.

    Article  CAS  PubMed  Google Scholar 

  26. Dang AT, Strietz J, Zenobi A, Khameneh HJ, Brandl SM, Lozza L, et al. NLRC5 promotes transcription of BTN3A1-3 genes and Vgamma9Vdelta2 T cell-mediated killing. iScience. 2021;24:101900 https://doi.org/10.1016/j.isci.2020.101900.

    Article  CAS  PubMed  Google Scholar 

  27. Stephan A, Wermann M, von Bohlen A, Koch B, Cynis H, Demuth HU, et al. Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. FEBS J. 2009;276:6522–36. https://doi.org/10.1111/j.1742-4658.2009.07337.x.

    Article  CAS  PubMed  Google Scholar 

  28. Logtenberg MEW, Jansen JHM, Raaben M, Toebes M, Franke K, Brandsma AM, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPalpha axis and a target for cancer immunotherapy. Nat Med. 2019;25:612–9. https://doi.org/10.1038/s41591-019-0356-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson K, Rogers MJ, Coxon FP, Crockett JC. Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharm. 2006;69:1624–32. https://doi.org/10.1124/mol.105.020776.

    Article  CAS  Google Scholar 

  30. Yu Z, Surface LE, Park CY, Horlbeck MA, Wyant GA, Abu-Remaileh M, et al. Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing bisphosphonates. Elife. 2018;7:e36620 https://doi.org/10.7554/eLife.36620.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ, Fuller JR, et al. An ER translocon for multi-pass membrane protein biogenesis. Elife. 2020;9:e56889 https://doi.org/10.7554/eLife.56889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wainberg M, Kamber RA, Balsubramani A, Meyers RM, Sinnott-Armstrong N, Hornburg D, et al. A genome-wide atlas of co-essential modules assigns function to uncharacterized genes. Nat Genet. 2021;53:638–49. https://doi.org/10.1038/s41588-021-00840-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol Lett. 2018;16:1390–6. https://doi.org/10.3892/ol.2018.8843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kovacs WJ, Tape KN, Shackelford JE, Duan X, Kasumov T, Kelleher JK, et al. Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol. 2007;127:273–90. https://doi.org/10.1007/s00418-006-0254-6.

    Article  CAS  PubMed  Google Scholar 

  35. Vantourout P, Laing A, Woodward MJ, Zlatareva I, Apolonia L, Jones AW, et al. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing gammadelta T cell biology. Proc Natl Acad Sci USA. 2018;115:1039–44. https://doi.org/10.1073/pnas.1701237115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rhodes DA, Chen HC, Williamson JC, Hill A, Yuan J, Smith S, et al. Regulation of Human gammadelta T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters. Front Immunol. 2018;9:662 https://doi.org/10.3389/fimmu.2018.00662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Henry O, Distefano MD, Wang YC, Räikkönen J, Mönkkönen J, et al. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. J Immunol. 2013;191:1029–42. https://doi.org/10.4049/jimmunol.1300658.

    Article  CAS  PubMed  Google Scholar 

  38. Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S, et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol. 2013;14:908–16. https://doi.org/10.1038/ni.2665.

    Article  CAS  PubMed  Google Scholar 

  39. Riano F, Karunakaran MM, Starick L, Li J, Scholz CJ, Kunzmann V, et al. Vgamma9Vdelta2 TCR-activation by phosphorylated antigens requires butyrophilin 3 A1 (BTN3A1) and additional genes on human chromosome 6. Eur J Immunol. 2014;44:2571–6. https://doi.org/10.1002/eji.201444712.

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen K, Li J, Puthenveetil R, Lin X, Poe MM, Hsiao CC, et al. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB J. 2017;31:4697–706. https://doi.org/10.1096/fj.201601370RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Payne KK, Mine JA, Biswas S, Chaurio RA, Perales-Puchalt A, Anadon CM, et al. BTN3A1 governs antitumor responses by coordinating alphabeta and gammadelta T cells. Science. 2020;369:942–9. https://doi.org/10.1126/science.aay2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J, et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood. 2012;120:2269–79. https://doi.org/10.1182/blood-2012-05-430470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Willcox CR, Salim M, Begley CR, Karunakaran MM, Easton EJ, von Klopotek C, et al. Phosphoantigen sensing combines TCR-dependent recognition of the BTN3A IgV domain and germline interaction with BTN2A1. Cell Rep. 2023;42:112321 https://doi.org/10.1016/j.celrep.2023.112321.

    Article  CAS  PubMed  Google Scholar 

  44. Afrache H, Pontarotti P, Abi-Rached L, Olive D. Evolutionary and polymorphism analyses reveal the central role of BTN3A2 in the concerted evolution of the BTN3 gene family. Immunogenetics. 2017;69:379–90. https://doi.org/10.1007/s00251-017-0980-z.

    Article  CAS  PubMed  Google Scholar 

  45. van Diest E, Hernández López P, Meringa AD, Vyborova A, Karaiskaki F, Heijhuurs S, et al. Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J Immunother Cancer. 2021;9:e003850 https://doi.org/10.1136/jitc-2021-003850.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lai AY, Patel A, Brewer F, Evans K, Johannes K, González LE, et al. Cutting Edge: Bispecific γδ T Cell Engager Containing Heterodimeric BTN2A1 and BTN3A1 Promotes Targeted Activation of Vγ9Vδ2(+) T Cells in the Presence of Costimulation by CD28 or NKG2D. J Immunol. 2022;209:1475–80. https://doi.org/10.4049/jimmunol.2200185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol. 2020;17:925–39. https://doi.org/10.1038/s41423-020-0504-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mensurado S, Blanco-Domínguez R, Silva-Santos B. The emerging roles of γδ T cells in cancer immunotherapy. Nat Rev Clin Oncol. 2023;20:178–91. https://doi.org/10.1038/s41571-022-00722-1.

    Article  CAS  PubMed  Google Scholar 

  49. Mamedov MR, Vedova S, Freimer JW, Sahu AD, Ramesh A, Arce MM, et al. CRISPR screens decode cancer cell pathways that trigger γδ T cell detection. Nature. 2023;621:188–95. https://doi.org/10.1038/s41586-023-06482-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Wei laboratory for their comments, technical support, and experimental assistance. We thank Dr. Ying Liu for providing the A375-Cas9 cells.

Funding

WW received funding from the National Science Foundation of China (31930016) and the Peking-Tsinghua Center for Life Sciences. ZW received funding from the State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases (2024KF00001) and the National Science Foundation of China (82350119). CCW received funding from the Talent Introduction Funds from the Chinese Academy of Medical Science (2022-RC310-10), the National Science Foundation of China (32150005), and the Research Funds from Health@InnoHK Program, launched by the Innovation Technology Commission of the Hong Kong Special Administrative Region.

Author information

Authors and Affiliations

Authors

Contributions

WW, ZW, QL, and MG designed and performed the research, analyzed the data and wrote the manuscript. XJ and YL performed the bioinformatics analyses. YY and FT performed the research and analyzed the data. PY provided PBMCs from healthy donors and the sgRNA library. SG and CCW performed the mass spectrometry analysis. TSF and APU provided the TCR tetramers and detection methods. WW and CCW supervised the project. All the authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Catherine CL Wong or Wensheng Wei.

Ethics declarations

Competing interests

WW is a founder and scientific adviser for EdiGene and Therorna, Inc. The other authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Lamao, Q., Gu, M. et al. Unsynchronized butyrophilin molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing. Cell Mol Immunol 21, 362–373 (2024). https://doi.org/10.1038/s41423-024-01135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-024-01135-z

Keywords

This article is cited by

Search

Quick links