Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGF-β-induced CD4+ FoxP3+ regulatory T cell-derived extracellular vesicles modulate Notch1 signaling through miR-449a and prevent collagen-induced arthritis in a murine model

Abstract

CD4+FOXP3+ Treg cells are central to the maintenance of self-tolerance and can be defective in autoimmunity. In autoimmune rheumatic diseases, dysfunctional self-tolerance, is to a large extent, caused by insufficient Treg-cell activity. Although nTregs have therapeutic effects in vivo, their relative scarcity and slow rate of in vitro expansion hinder the application of nTreg therapy. It was previously reported that EVs contribute significantly to the suppressive function of FOXP3+ Treg cells. Considering that the stability and plasticity of nTregs remain major challenges in vivo, we established EVs derived from in vitro TGF-β-induced Treg cells (iTreg-EVs) and assessed their functions in a murine model of autoimmune arthritis. The results demonstrated that iTreg-EVs preferentially homed to the pathological joint and efficiently prevented the imbalance in Th17/Treg cells in arthritic mice. Furthermore, we found that miR-449a-5p mediated Notch1 expression modulation and that miR-449a-5p knockdown abolished the effects of iTreg-EVs on effector T cells and regulatory T cells in vitro and in vivo. Taken together, our results show that iTreg-EVs control the inflammatory responses of recipient T cells through miR-449a-5p-dependent modulation of Notch1 and ameliorate the development and severity of arthritis, which may provide a potential cell-free strategy based on manipulating iTreg-EVs to prevent autoimmune arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Z, Li D, Tsun A, Li B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol. 2015;12:558–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol. 2007;8:277–84.

    Article  CAS  PubMed  Google Scholar 

  3. Miyara M, Ito Y, Sakaguchi S. TREG-cell therapies for autoimmune rheumatic diseases. Nat Rev Rheumatol. 2014;10:543–51.

    Article  CAS  PubMed  Google Scholar 

  4. Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14:154–65.

    Article  CAS  PubMed  Google Scholar 

  5. Su W, Chen X, Zhu W, Yu J, Li W, Li Y, et al. The cAMP-Adenosine feedback loop maintains the suppressive function of regulatory T cells. J Immunol. 2019;203:1436–46.

    Article  CAS  PubMed  Google Scholar 

  6. Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.

    Article  CAS  Google Scholar 

  7. O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21:585–606.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Agrahari V, Agrahari V, Burnouf PA, Chew CH, Burnouf T. Extracellular microvesicles as new industrial therapeutic frontiers. Trends Biotechnol. 2019;37:707–29.

    Article  CAS  PubMed  Google Scholar 

  9. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  10. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:640.

    Article  CAS  Google Scholar 

  11. Witwer KW, Van Balkom B, Bruno S, Choo A, Dominici M, Gimona M, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles. 2019;8:1609206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang HW, Kim HK, Jung GY, Jung YJ, Yong WC. Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles. 2020;9:1735249.

    Article  CAS  Google Scholar 

  13. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

  14. Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3:1156–62.

    Article  PubMed  CAS  Google Scholar 

  15. Segura E, Amigorena S, Thery C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis. 2005;35:89–93.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Xie Y, Li W, Chibbar R, Xiong SJ. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic Tlymphocyte responses and antitumor immunity. Cell Mol Immunol. 2011;8:23–30.

    Article  PubMed  CAS  Google Scholar 

  17. Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar R, et al. Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol. 2010;185:5268–78.

    Article  CAS  PubMed  Google Scholar 

  18. Busch A, Quast T, Keller S, Kolanus W, Knolle P, Altevogt P, et al. Transfer of T cell surface molecules to dendritic cells upon CD4+ T cell priming involves two distinct mechanisms. J Immunol. 2008;181:3965–73.

    Article  CAS  PubMed  Google Scholar 

  19. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.

    Article  PubMed  CAS  Google Scholar 

  20. Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013;43:2430–40.

    Article  CAS  PubMed  Google Scholar 

  21. Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014;41:89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12 sup pp 1-13:19–30.

    Article  CAS  PubMed  Google Scholar 

  23. Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev. 2011;10:744–55.

    Article  CAS  PubMed  Google Scholar 

  24. Herrath J, Müller M, Amoudruz P, Janson P, Michaëlsson J, Larsson PT, et al. The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur J Immunol. 2011;41:2279–90.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol. 2002;169:4183–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lan Q, Fan H, Quesniaux V, Ryffel B, Liu Z, Zheng SG. Induced Foxp3(+) regulatory T cells: a potential new weapon to treat autoimmune and inflammatory diseases? J Mol Cell Biol. 2012;4:22–8.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou X, Kong N, Zou H, Brand D, Zheng SG. Therapeutic potential of TGF-β-induced CD4+ Foxp3 + regulatory T cells in autoimmune diseases. Autoimmunity. 2011;44:43–50.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol. 2008;180:7112–6.

    Article  CAS  PubMed  Google Scholar 

  29. Lu L, Wang J, Zhang F, Chai Y, Brand D, Wang X, et al. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol. 2010;184:4295–306.

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol. 2007;178:6725–9.

    Article  CAS  PubMed  Google Scholar 

  31. O’Connor RA, Leech MD, Suffner J, Hammerling GJ, Anderton SM. Myelin-reactive, TGF-beta-induced regulatory T cells can be programmed to develop Th1-like effector function but remain less proinflammatory than myelin-reactive Th1 effectors and can suppress pathogenic T cell clonal expansion in vivo. J Immunol. 2010;185:7235–43.

    Article  PubMed  CAS  Google Scholar 

  32. Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, et al. Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells. 2014;32:462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lai P, Chen X, Guo L, Wang Y, Liu X, Liu Y, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol. 2018;11:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie X, Nie H, Zhou Y, Lian S, Mei H, Lu Y, et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat Commun. 2019;10:5476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai W, Su L, Lu H, Dong H, Zhang X. Exosomes-mediated synthetic Dicer substrates delivery for intracellular Dicer imaging detection. Biosens Bioelectron. 2020;151:111907.

    Article  CAS  PubMed  Google Scholar 

  36. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med. 2016;20:2318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc. 2007;2:1269–75.

    Article  CAS  PubMed  Google Scholar 

  38. Kong N, Lan Q, Su W, Chen M, Wang J, Yang Z, et al. Induced T regulatory cells suppress osteoclastogenesis and bone erosion in collagen-induced arthritis better than natural T regulatory cells. Ann Rheum Dis. 2012;71:1567–72.

    Article  PubMed  Google Scholar 

  39. Kong N, Lan Q, Chen M, Wang J, Shi W, Horwitz DA, et al. Antigen-specific transforming growth factor beta-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance. Arthritis Rheum. 2012;64:2548–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo Y, Wu W, Gu J, Zhang X, Dang J, Wang J, et al. Human gingival tissue-derived MSC suppress osteoclastogenesis and bone erosion via CD39-adenosine signal pathway in autoimmune arthritis. EBioMedicine. 2019;43:620–31.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ye SB, Zhang H, Cai TT, Liu YN, Ni JJ, He J, et al. Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol. 2016;240:329–40.

    Article  CAS  PubMed  Google Scholar 

  42. Fang SB, Zhang HY, Wang C, He BX, Liu XQ, Meng XC, et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J Extracell Vesicles. 2020;9:1723260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105:7797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo ZS, Dixon G, Kazuo O, Satoshi Y, Horwitz DA. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+ CD25− precursors. J Immunol. 2002;169:4183–9.

    Article  Google Scholar 

  45. Ji H, Chen L, Sun X, Li X, Chen W, Zhao P, et al. Hepatitis-associated aplastic anemia treated successfully with antithymocyte globulin. J Pediatr Hematol Oncol. 2018;40:e355–8.

    Article  PubMed  Google Scholar 

  46. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  47. Marcet B, Chevalier B, Luxardi G, Coraux C, Zaragosi LE, Cibois M, et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat Cell Biol. 2011;13:693–9.

    Article  CAS  PubMed  Google Scholar 

  48. Marcet B, Chevalier B, Coraux C, Kodjabachian L, Barbry P. MicroRNA-based silencing of Delta/Notch signaling promotes multiple cilia formation. Cell Cycle. 2011;10:2858–64.

    Article  CAS  PubMed  Google Scholar 

  49. Azimi M, Ghabaee M, Moghadasi AN, Noorbakhsh F, Izad M. Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis. Immunol Res. 2018;66:513–20.

    Article  CAS  PubMed  Google Scholar 

  50. Kimura K, Hohjoh H, Yamamura T. The role for exosomal microRNAs in disruption of regulatory T cell homeostasis in multiple sclerosis. J Exp Neuroscience. 2018;12:117906951876489.

    Article  Google Scholar 

  51. Yu X, Huang C, Song B, Xiao Y, Fang M, Feng J, et al. CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 2013;285:62–8.

    Article  CAS  PubMed  Google Scholar 

  52. Tung SL, Fanelli G, Matthews RI, Bazoer J, Smyth LA. Regulatory T cell extracellular vesicles modify T-effector cell cytokine production and protect against human skin allograft damage. Front Cell Dev Biol. 2020;8:317.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nolte-'t Hoen EN, Wagenaar-Hilbers JP, Peters PJ, Gadella BM, van Eden W, Wauben MH. Uptake of membrane molecules from T cells endows antigen-presenting cells with novel functional properties. Eur J Immunol. 2004;34:3115–25.

    Article  CAS  PubMed  Google Scholar 

  54. Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018;8:6065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  CAS  Google Scholar 

  56. Zhao C, Li X, Yang Y, Li Z, Li M, Tan Q, et al. An analysis of Treg/Th17 cells imbalance associated microRNA networks regulated by moxibustion therapy on Zusanli (ST36) and Shenshu (BL23) in mice with collagen induced arthritis. Am J Transl Res. 2019;11:4029–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Riella LV, Ueno T, Batal I, De Serres SA, Bassil R, Elyaman W, et al. Blockade of Notch Ligand Delta1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation. J Immunol. 2011;187:4629–38.

    Article  CAS  PubMed  Google Scholar 

  58. Jiao Z, Wang W, Hua S, Liu M, Wang H, Wang X, et al. Blockade of Notch signaling ameliorates murine collagen-induced arthritis via suppressing Th1 and Th17 cell responses. Am J Pathol. 2014;184:1085–93.

    Article  CAS  PubMed  Google Scholar 

  59. Keerthivasan S, Suleiman R, Lawlor R, Roderick J, Bates T, Minter L, et al. Notch signaling regulates mouse and human Th17 differentiation. J Immunol. 2011;187:692–701.

    Article  CAS  PubMed  Google Scholar 

  60. Yu S, Liu C, Li L, Tian T, Wang M, Hu Y, et al. Inactivation of Notch signaling reverses the Th17/Treg imbalance in cells from patients with immune thrombocytopenia. Lab Investig. 2015;95:157–67.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martínez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10:1000–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+ CD4+ CD25+ regulatory T cells induced by IL-2 and TGF-? Are resistant to Th17 conversion by IL-6. J Immunol. 2008;180:7112–6.

    Article  CAS  PubMed  Google Scholar 

  63. Yang S, Zhang X, Chen J, Dang J, Zheng SG. Induced, but not natural, regulatory T cells retain phenotype and function following exposure to inflamed synovial fibroblasts. Sci Adv. 2020;6:eabb0606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5:e38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hippen KL, Merkel SC, Schirm DK, Nelson C, Tennis NC, Riley JL, et al. Generation and large-scale expansion of human inducible regulatory T cells that suppress graft-versus-host disease. Am J Transplant. 2011;11:1148–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu L, Ma J, Li Z, Lan Q, Chen M, Liu Y, et al. All-trans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS ONE. 2011;6:e24590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Torabi S, Tamaddon M, Asadolahi M, Shokri G, Tavakoli R, Tasharrofi N, et al. miR-455-5p downregulation promotes inflammation pathways in the relapse phase of relapsing-remitting multiple sclerosis disease. Immunogenetics. 2019;71:87–95.

    Article  CAS  PubMed  Google Scholar 

  68. Paerewijck O, Maertens B, Dreesen L, Van Meulder F, Peelaers I, Ratman D, et al. Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia. Sci Rep. 2017;7:8520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496:518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sullivan JA, Tomita Y, Jankowska-Gan E, Lema DA, Arvedson MP, Nair A, et al. Treg-cell-derived IL-35-coated extracellular vesicles promote infectious tolerance. Cell Rep. 2020;30:1039–51.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank NO at Penn State University Hershey Medical Center for her useful discussion and constructive comments on our paper. This study was supported by the National Key R&D Program of China (2017YFA0105801) and the General Program of the National Natural Science Foundation of China (81871224).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiment: SGZ Performed the experiments: JRC, XJH, YLH, RZL, JZ, FH, and JW. Processed and analyzed the data: JRC, FH, YLH, and XRL. Wrote and revised the paper: JRC, NO, and SGZ.

Corresponding author

Correspondence to Song Guo Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Huang, F., Hou, Y. et al. TGF-β-induced CD4+ FoxP3+ regulatory T cell-derived extracellular vesicles modulate Notch1 signaling through miR-449a and prevent collagen-induced arthritis in a murine model. Cell Mol Immunol 18, 2516–2529 (2021). https://doi.org/10.1038/s41423-021-00764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00764-y

Keywords

This article is cited by

Search

Quick links