Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural understanding of T cell receptor triggering

Abstract

The T cell receptor (TCR) is one of the most complicated receptors in mammalian cells, and its triggering mechanism remains mysterious. As an octamer complex, TCR comprises an antigen-binding subunit (TCRαβ) and three CD3 signaling subunits (CD3ζζ, CD3δε, and CD3γε). Engagement of TCRαβ with an antigen peptide presented on the MHC leads to tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) in CD3 cytoplasmic domains (CDs), thus translating extracellular binding kinetics to intracellular signaling events. Whether conformational change plays an important role in the transmembrane signal transduction of TCR is under debate. Attracted by the complexity and functional importance of TCR, many groups have been studying TCR structure and triggering for decades using diverse biochemical and biophysical tools. Here, we synthesize these structural studies and discuss the relevance of the conformational change model in TCR triggering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. von Boehmer, H. & Kisielow, P. Self-nonself discrimination by T cells. Science 248, 1369–1373 (1990).

    Article  Google Scholar 

  3. Pielak, R. M. et al. Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination. Proc. Natl Acad. Sci. USA 114, 12190–12195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, J. et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity 39, 846–857 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Schamel, W. W. et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 202, 493–503 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Merwe, P. A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11, 47–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hedrick, S. M., Cohen, D. I., Nielsen, E. A. & Davis, M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Yanagi, Y. et al. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308, 145–149 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Bentley, G. A., Boulot, G., Karjalainen, K. & Mariuzza, R. A. Crystal structure of the beta chain of a T cell antigen receptor. Science 267, 1984–1987 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J. et al. Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. EMBO J. 17, 10–26 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kjer-Nielsen, L. et al. Crystal structure of the human T cell receptor CD3 epsilon gamma heterodimer complexed to the therapeutic mAb OKT3. Proc. Natl Acad. Sci. USA 101, 7675–7680 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnett, K. L., Harrison, S. C. & Wiley, D. C. Crystal structure of a human CD3-epsilon/delta dimer in complex with a UCHT1 single-chain antibody fragment. Proc. Natl Acad. Sci. USA 101, 16268–16273 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Call, M. E. et al. The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127, 355–368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Yin, Y., Wang, X. X. & Mariuzza, R. A. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4. Proc. Natl Acad. Sci. USA 109, 5405–5410 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia, K. C. et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Dong De et al. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature 573, 546–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Punt, J. A., Roberts, J. L., Kearse, K. P. & Singer, A. Stoichiometry of the T cell antigen receptor (TCR) complex: each TCR/CD3 complex contains one TCR alpha, one TCR beta, and two CD3 epsilon chains. J. Exp. Med. 180, 587–593 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Hennecke, J. & Wiley, D. C. T cell receptor-MHC interactions up close. Cell 104, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Alcover, A., Alarcon, B. & Di Bartolo, V. Cell biology of T cell receptor expression and regulation. Annu. Rev. Immunol. 36, 103–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Ghendler, Y., Smolyar, A., Chang, H. C. & Reinherz, E. L. One of the CD3epsilon subunits within a T cell receptor complex lies in close proximity to the Cbeta FG loop. J. Exp. Med. 187, 1529–1536 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, S. T. et al. Distinctive CD3 heterodimeric ectodomain topologies maximize antigen-triggered activation of alpha beta T cell receptors. J. Immunol. 185, 2951–2959 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Sasada, T. et al. Involvement of the TCR Cbeta FG loop in thymic selection and T cell function. J. Exp. Med. 195, 1419–1431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Touma, M. et al. The TCR C beta FG loop regulates alpha beta T cell development. J. Immunol. 176, 6812–6823 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Das, D. K. et al. Pre-T cell receptors (Pre-TCRs) leverage vbeta complementarity determining regions (CDRs) and hydrophobic patch in mechanosensing thymic self-ligands. J. Biol. Chem. 291, 25292–25305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, Z. Y. et al. Solution structure of the CD3epsilondelta ectodomain and comparison with CD3epsilongamma as a basis for modeling T cell receptor topology and signaling. Proc. Natl Acad. Sci. USA 101, 16867–16872 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Birnbaum, M. E. et al. Molecular architecture of the alphabeta T cell receptor-CD3 complex. Proc. Natl Acad. Sci. USA 111, 17576–17581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Backstrom, B. T., Muller, U., Hausmann, B. & Palmer, E. Positive selection through a motif in the alphabeta T cell receptor. Science 281, 835–838 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Werlen, G., Hausmann, B. & Palmer, E. A motif in the alphabeta T-cell receptor controls positive selection by modulating ERK activity. Nature 406, 422–426 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Backstrom, B. T. et al. A motif within the T cell receptor alpha chain constant region connecting peptide domain controls antigen responsiveness. Immunity 5, 437–447 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Mallaun, M. et al. The T cell receptor’s alpha-chain connecting peptide motif promotes close approximation of the CD8 coreceptor allowing efficient signal initiation. J. Immunol. 180, 8211–8221 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Naeher, D., Luescher, I. F. & Palmer, E. A role for the alpha-chain connecting peptide motif in mediating TCR-CD8 cooperation. J. Immunol. 169, 2964–2970 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. A conserved CXXC motif in CD3epsilon is critical for T cell development and TCR signaling. PLoS Biol. 7, e1000253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, C., Call, M. E. & Wucherpfennig, K. W. A membrane-proximal tetracysteine motif contributes to assembly of CD3deltaepsilon and CD3gammaepsilon dimers with the T cell receptor. J. Biol. Chem. 281, 36977–36984 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Call, M. E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K. W. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–979 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Geisler, C. Failure to synthesize the CD3-gamma chain. Consequences for T cell antigen receptor assembly, processing, and expression. J. Immunol. 148, 2437–2445 (1992).

    CAS  PubMed  Google Scholar 

  43. Call, M. E. & Wucherpfennig, K. W. Molecular mechanisms for the assembly of the T cell receptor-CD3 complex. Mol. Immunol. 40, 1295–1305 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Oro, U. et al. Regulation of constitutive TCR internalization by the zeta-chain. J. Immunol. 169, 6269–6278 (2002).

    Article  PubMed  Google Scholar 

  45. Lauritsen, J. P. et al. Masking of the CD3 gamma di-leucine-based motif by zeta is required for efficient T-cell receptor expression. Traffic 5, 672–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Stenkamp, R. E., Teller, D. C. & Palczewski, K. Crystal structure of rhodopsin: a G-protein-coupled receptor. Chembiochem 3, 963–967 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kuhns, M. S. & Davis, M. M. Disruption of extracellular interactions impairs T cell receptor-CD3 complex stability and signaling. Immunity 26, 357–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kelly, L. A., Stephen, C. H., Wiley, D. C. Crystal structure of a human CD3ed dimer in complex with a UCHT1 single-chain antibody fragment. Proc. Natl Acad. Sci. USA 101, 16268–16273 (2004).

    Article  Google Scholar 

  49. He, Y. et al. Identification of the docking site for CD3 on the T cell receptor beta chain by solution NMR. J. Biol. Chem. 290, 19796–19805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao, G. F. et al. Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature 387, 630–634 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, R., Natarajan, K. & Margulies, D. H. Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J. Immunol. 183, 2554–2564 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Krshnan, L., Park, S., Im, W., Call, M. J. & Call, M. E. A conserved alphabeta transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc. Natl Acad. Sci. USA 113, E6649–E6658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swamy, M. et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Matsui, K. et al. Low affinity interaction of peptide-MHC complexes with T cell receptors. Science 254, 1788–1791 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Gee, M. H. et al. Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc. Natl Acad. Sci. USA 115, E7369–E7378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yin, Y. & Mariuzza, R. A. The multiple mechanisms of T cell receptor cross-reactivity. Immunity 31, 849–851 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, L. C., Tuot, D. S., Lyons, D. S., Garcia, K. C. & Davis, M. M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M. & Chakraborty, A. K. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl Acad. Sci. USA 107, 16916–16921 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. McKeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thill, P. A., Weiss, A. & Chakraborty, A. K. Phosphorylation of a tyrosine residue on Zap70 by Lck and its subsequent binding via an SH2 domain may be a key gatekeeper of T cell receptor signaling in vivo. Mol. Cell Biol. 36, 2396–2402 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yousefi O. S., et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. Elife 8, 42475 (2019).

  63. Govern, C. C., Paczosa, M. K., Chakraborty, A. K. & Huseby, E. S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Aleksic, M. et al. Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32, 163–174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stepanek, O. et al. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159, 333–345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Valitutti, S. The serial engagement model 17 years after: from TCR triggering to immunotherapy. Front. Immunol. 3, 272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, W. et al. Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat. Struct. Mol. Biol. 24, 1081–1092 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Das, J. et al. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136, 337–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stefanova, I. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Wertek, F. & Xu, C. Digital response in T cells: to be or not to be. Cell Res. 24, 265–266 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat. Immunol. 17, 574–582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Courtney, A. H. et al. A Phosphosite within the SH2 domain of Lck regulates its activation by CD45. Mol. Cell 67, 498–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Janeway, C. A. Jr. Ligands for the T-cell receptor: hard times for avidity models. Immunol. Today 16, 223–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, B. et al. 2D TCR-pMHC-CD8 kinetics determines T-cell responses in a self-antigen-specific TCR system. Eur. J. Immunol. 44, 239–250 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hawse, W. F. et al. TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility. J. Immunol. 192, 2885–2891 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Krogsgaard, M. et al. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol. Cell 12, 1367–1378 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Schon, A. & Freire, E. Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry 28, 5019–5024 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Garcia, K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Holland, C. J. et al. In silico and structural analyses demonstrate that intrinsic protein motions guide T cell receptor complementarity determining region loop flexibility. Front. Immunol. 9, 674 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reiser, J. B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4, 241–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Beddoe, T. et al. Antigen ligation triggers a conformational change within the constant domain of the alphabeta T cell receptor. Immunity 30, 777–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Rangarajan, S. et al. Peptide-MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. J. Biol. Chem. 293, 15991–16005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reiser, J. B. et al. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Natarajan, K. et al. An allosteric site in the T-cell receptor Cbeta domain plays a critical signalling role. Nat. Commun. 8, 15260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134–3155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anvari, B., Torres, J. H. & McIntyre, B. W. Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers. J. Biomed. Opt. 9, 865–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hong, J. et al. Force-regulated in situ TCR–peptide-bound MHC class II kinetics determine functions of CD4+ T cells. J. Immunol. 195, 3557–3564 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, S. T. et al. The alphabeta T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Adams, J. J. et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35, 681–693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feng, D., Bond, C. J., Ely, L. K., Maynard, J. & Garcia, K. C. Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction ‘codon’. Nat. Immunol. 8, 975–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki, T. et al. Mechanical force effect on the two-state equilibrium of the hyaluronan-binding domain of CD44 in cell rolling. Proc. Natl Acad. Sci. USA 112, 6991–6996 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sibener, L. V. et al. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 174, 672–687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, Y. et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl Acad. Sci. USA 113, 5610–5615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Das, D. K. et al. Force-dependent transition in the T-cell receptor beta-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc. Natl Acad. Sci. USA 112, 1517–1522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pryshchep, S., Zarnitsyna, V. I., Hong, J., Evavold, B. D. & Zhu, C. Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J. Immunol. 193, 68–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, P. et al. Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol. Cell 73, 1015–1027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wieczorek, M. et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front. Immunol. 8, 292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fernandes, R. A. et al. T cell receptors are structures capable of initiating signaling in the absence of large conformational rearrangements. J. Biol. Chem. 287, 13324–13335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, M. S. et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3zetazeta. Immunity 43, 227–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brazin, K. N. et al. The T cell antigen receptor alpha transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity 49, 829–841 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schamel, W. W., Alarcon, B., Hofer, T. & Minguet, S. The allostery model of TCR regulation. J. Immunol. 198, 47–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Beck-Garcia, K. et al. Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. Biochim. Biophys. Acta 1853, 802–809 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Yang, W. et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, F., Beck-Garcia, K., Zorzin, C., Schamel, W. W. & Davis, M. M. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat. Immunol. 17, 844–850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ballek, O., Valecka, J., Manning, J. & Filipp, D. The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model. Immunol. Cell Biol. 93, 384–395 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Aivazian, D. & Stern, L. J. Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Deford-Watts, L. M. et al. The cytoplasmic tail of the T cell receptor CD3 epsilon subunit contains a phospholipid-binding motif that regulates T cell functions. J. Immunol. 183, 1055–1064 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, H., Cordoba, S. P., Dushek, O. & van der Merwe, P. A. Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl Acad. Sci. USA 108, 19323–19328 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. DeFord-Watts, L. M. et al. The CD3 zeta subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J. Immunol. 186, 6839–6847 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Bettini, M. L. et al. Membrane association of the CD3epsilon signaling domain is required for optimal T cell development and function. J. Immunol. 193, 258–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Li, L. et al. Ionic CD3-Lck interaction regulates the initiation of T-cell receptor signaling. Proc. Natl Acad. Sci. USA 114, E5891–E5899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guo, X. et al. Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res. 27, 505–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Sasmal, D. K. et al. TCR-pMHC bond conformation controls TCR ligand discrimination. Cell. Mol. Immunol. (2019). https://doi.org/10.1038/s41423-019-0273-6. [Epub ahead of print].

  125. Dobbins, J. et al. Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Sci. Signal. 9, ra75 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gil, D., Schamel, W. W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Paensuwan, P. et al. Nck binds to the T cell antigen receptor using its SH3.1 and SH2 domains in a cooperative manner, promoting TCR functioning. J. Immunol. 196, 448–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Hem, C. D. et al. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Commun. Signal. 13, 31 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Borroto, A. et al. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci. Transl. Med. 8, 370ra184 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Sun, Z. J., Kim, K. S., Wagner, G. & Reinherz, E. L. Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105, 913–923 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Ding, Y. H., Baker, B. M., Garboczi, D. N., Biddison, W. E. & Wiley, D. C. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Kjer-Nielsen, L. et al. The 1.5 A crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance. Structure 10, 1521–1532 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Wei Wu and Chengsong Yan for thoughtful discussions. C.X. is funded by CAS grants (Strategic Priority Research Program XDB29000000, Facility-based Open Research Program QYZDB-SSW-SMC048, Fountain-Valley Life Sciences Fund of University of Chinese Academy of Sciences Education Foundation), NSFC grant (31861133009, 31621003), MOST Grant (2018YFA0800700) and the Ten Thousand Talent Program “Leading Talent” of China. H.L. is funded by an NSFC grant (31670751).

Author information

Authors and Affiliations

Authors

Contributions

C.X. designed the framework. X.X. wrote the manuscript. H.L. and C.X. revised it. H.L. and X.X. made the figures.

Corresponding author

Correspondence to Chenqi Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Li, H. & Xu, C. Structural understanding of T cell receptor triggering. Cell Mol Immunol 17, 193–202 (2020). https://doi.org/10.1038/s41423-020-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0367-1

Keywords

This article is cited by

Search

Quick links