Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-resident lymphocytes: from adaptive to innate immunity

Abstract

Efficient immune responses against invading pathogens often involve coordination between cells from both the innate and adaptive immune systems. For multiple decades, it has been believed that CD8+ memory T cells and natural killer (NK) cells constantly and uniformly recirculate. Only recently was the existence of noncirculating memory T and NK cells that remain resident in the peripheral tissues, termed tissue-resident memory T (TRM) cells and tissue-resident NK (trNK) cells, observed in various organs owing to improved techniques. TRM cells populate a wide range of peripheral organs, including the skin, sensory ganglia, gut, lungs, brain, salivary glands, female reproductive tract, and others. Recent findings have demonstrated the existence of TRM in the secondary lymphoid organs (SLOs) as well, leading to revision of the classic theory that they exist only in peripheral organs. trNK cells have been identified in the uterus, skin, kidney, adipose tissue, and salivary glands. These tissue-resident lymphocytes do not recirculate in the blood or lymphatic system and often adopt a unique phenotype that is distinct from those of circulating immune cells. In this review, we will discuss the recent findings on the tissue residency of both innate and adaptive lymphocytes, with a particular focus on CD8+ memory T cells, and describe some advances regarding unconventional T cells (invariant NKT cells, mucosal-associated invariant T cells (MAIT), and γδ T cells) and the emerging family of trNK cells. Specifically, we will focus on the phenotypes and functions of these subsets and discuss their implications in anti-viral and anti-tumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Bevan, M. J. Memory T cells as an occupying force. Eur. J. Immunol. 41, 1192–1195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosato, P. C., Beura, L. K. & Masopust, D. Tissue resident memory T cells and viral immunity. Curr. Opin. Virol. 22, 44–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Peng, H. & Sun, R. Liver-resident N. K. cells and their potential functions. Cell Mol. Immunol. 14, 890–894 (2017).

  4. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mackay, L. K. & Kallies, A. Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol. 38, 94–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Lugli, E., Hudspeth, K., Roberto, A. & Mavilio, D. Tissue-resident and memory properties of human T-cell and NK-cell subsets. Eur. J. Immunol. 46, 1809–1817 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Shin, H. Formation and function of tissue-resident memory T cells during viral infection. Curr. Opin. Virol. 28, 61–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Thom, J. T. & Oxenius, A. Tissue-resident memory T cells in cytomegalovirus infection. Curr. Opin. Virol. 16, 63–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Mackay, L. K. et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40, 747–757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, N. & Bevan, M. J. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8(+) T cells responding to infection. Nat. Immunol. 16, 406–414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, Z., Molloy, M. J. & Usherwood, E. J. CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose. Cell Mol. Immunol. 13, 82–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pavelko, K. D., Bell, M. P., Harrington, S. M. & Dong, H. B7-H1 Influences the accumulation of virus-specific tissue resident memory T cells in the central nervous system. Front Immunol. 8, 1532 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Landrith, T. A. et al. CD103(+) CD8 T cells in the Toxoplasma-infected brain exhibit a tissue-resident memory transcriptional profile. Front Immunol. 8, 335 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ma, C., Mishra, S., Demel, E. L., Liu, Y. & Zhang, N. TGF-beta controls the formation of kidney-resident T cells via promoting effector T cell extravasation. J. Immunol. 198, 749–756 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Schenkel, J. M., Fraser, K. A. & Masopust, D. Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J. Immunol. 192, 2961–2964 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Anderson, K. G. et al. Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol. 189, 2702–2706 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Tse, S. W., Cockburn, I. A., Zhang, H., Scott, A. L. & Zavala, F. Unique transcriptional profile of liver-resident memory CD8+ T cells induced by immunization with malaria sporozoites. Genes Immun. 14, 302–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shuai, Z. et al. Adaptive immunity in the liver. Cell Mol. Immunol. 13, 354–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338 e325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stelma, F. et al. Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Sci. Rep. 7, 6172 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pallett, L. J. et al. IL-2(high) tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med 214, 1567–1580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl Acad. Sci. USA 109, 19739–19744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wakim, L. M., Gupta, N., Mintern, J. D. & Villadangos, J. A. Enhanced survival of lung tissue-resident memory CD8(+) T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol. 14, 238–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Takamura, S. Persistence in temporary lung niches: a survival strategy of lung-resident memory CD8(+) T cells. Viral Immunol. 30, 438–450 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hofmann, M. & Pircher, H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl Acad. Sci. USA 108, 16741–16746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cuburu, N. et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J. Clin. Invest 122, 4606–4620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hofmann, M., Oschowitzer, A., Kurzhals, S. R., Kruger, C. C. & Pircher, H. Thymus-resident memory CD8+ T cells mediate local immunity. Eur. J. Immunol. 43, 2295–2304 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Radenkovic, M. et al. Characterization of resident lymphocytes in human pancreatic islets. Clin. Exp. Immunol. 187, 418–427 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCully, M. L. et al. CCR8 expression defines tissue-resident memory T cells in human skin. J. Immunol. 200, 1639–1650 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheuk, S. et al. CD49a expression defines tissue-resident CD8(+) T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, G. et al. Skin-resident effector memory CD8(+)CD28(-) T cells exhibit a profibrotic phenotype in patients with systemic sclerosis. J. Invest Dermatol. 137, 1042–1050 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Ickrath, P. et al. Accumulation of CD69+ tissueresident memory T cells in the nasal polyps of patients with chronic rhinosinusitis. Int J. Mol. Med. 42, 1116–1124 (2018).

    CAS  PubMed  Google Scholar 

  47. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hartana, C. A. et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin. Exp. Immunol. 194, 39–53 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Herndler-Brandstetter, D. et al. KLRG1(+) effector CD8(+) T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity 48, 716–729 e718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, Y. T. et al. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol. 85, 4085–4094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).

  53. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 372, 190–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, S. K., Reed, D. S., Heath, W. R., Carbone, F. & Lefrancois, L. Activation and migration of CD8 T cells in the intestinal mucosa. J. Immunol. 159, 4295–4306 (1997).

    CAS  PubMed  Google Scholar 

  55. Haddadi, S. et al. Expression and role of VLA-1 in resident memory CD8 T cell responses to respiratory mucosal viral-vectored immunization against tuberculosis. Sci. Rep. 7, 9525 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Desai, P. et al. The TNF superfamily molecule LIGHT promotes the generation of circulating and lung-resident memory CD8 T cells following an acute respiratory virus infection. J. Immunol. 200, 2894–2904 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Milner, J. J. et al. Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta. Nat. Immunol. 17, 414–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Schenkel, J. M. et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. J. Immunol. 196, 3920–3926 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Bergsbaken, T., Bevan, M. J. & Fink, P. J. Local inflammatory cues regulate differentiation and persistence of CD8(+) tissue-resident memory T cells. Cell Rep. 19, 114–124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Srivastava, R. et al. CXCL10/CXCR3-dependent mobilization of herpes simplex virus-specific CD8(+) TEM and CD8(+) TRM cells within infected tissues allows efficient protection against recurrent herpesvirus infection and disease. J. Virol. 91, e00278–17 (2017).

  66. Zaid, A. et al. Chemokine receptor-dependent control of skin tissue-resident memory T cell formation. J. Immunol. 199, 2451–2459 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Caldeira-Dantas, S. et al. The chemokine receptor CXCR3 promotes CD8(+) T cell accumulation in uninfected salivary glands but is not necessary after murine cytomegalovirus infection. J. Immunol. 200, 1133–1145 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Srivastava, R. et al. CXCL17 chemokine-dependent mobilization of CXCR8(+)CD8(+) effector memory and tissue-resident memory T cells in the vaginal mucosa is associated with protection against genital herpes. J. Immunol. 200, 2915–2926 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med 213, 951–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kinnear, E. et al. Airway T cells protect against RSV infection in the absence of antibody. Mucosal Immunol. 11, 249–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Beura, L. K. et al. Intravital mucosal imaging of CD8(+) resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pizzolla, A, et al. Resident memory CD8(+) T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2, eaam6970 (2017).

  74. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA 111, 5307–5312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takamura, S. Niches for the long-term maintenance of tissue-resident memory T cells. Front Immunol. 9, 1214 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Takamura, S. et al. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J. Exp. Med 213, 3057–3073 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gebhardt, T. & Mackay, L. K. Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol. 3, 340 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kinnear, E. et al. Airway T cells protect against RSV infection in the absence of antibody. Mucosal Immunol. 11, 290 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davies, B. et al. Cutting edge: tissue-resident memory T cells generated by multiple immunizations or localized deposition provide enhanced immunity. J. Immunol. 198, 2233–2237 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Brizic, I. et al. Brain-resident memory CD8(+) T cells induced by congenital CMV infection prevent brain pathology and virus reactivation. Eur. J. Immunol. 48, 950–964 (2018).

  84. Steinbach, K. et al. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J. Exp. Med 213, 1571–1587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jozwik, A. et al. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat. Commun. 6, 10224 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. McMaster, S. R., Wilson, J. J., Wang, H. & Kohlmeier, J. E. Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-gamma production. J. Immunol. 195, 203–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Tan, H. X. et al. Induction of vaginal-resident HIV-specific CD8 T cells with mucosal prime-boost immunization. Mucosal. Immunol. 11, 994–1007 (2017).

  89. Hu, Z. et al. Sendai virus mucosal vaccination establishes lung-resident memory CD8 T cell immunity and boosts BCG-primed protection against TB in mice. Mol. Ther. 25, 1222–1233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morabito, K. M. et al. Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung. Mucosal Immunol. 10, 545–554 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Gibbs, A. et al. HIV-infected women have high numbers of CD103-CD8+ T cells residing close to the basal membrane of the ectocervical epithelium. J. Infect. Dis. 218, 453–465 (2017).

  92. Ariotti, S. et al. T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8(+) T cells. Nat. Immunol. 14, 509–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmidt, J. D. et al. Rapid allergen-induced interleukin-17 and interferon-gamma secretion by skin-resident memory CD8(+) T cells. Contact Dermat. 76, 218–227 (2017).

    Article  CAS  Google Scholar 

  95. Webb, J. R., Milne, K., Watson, P., Deleeuw, R. J. & Nelson, B. H. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20, 434–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Webb, J. R. et al. Profound elevation of CD8+ T cells expressing the intraepithelial lymphocyte marker CD103 (alphaE/beta7 Integrin) in high-grade serous ovarian cancer. Gynecol. Oncol. 118, 228–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Webb, J. R., Milne, K. & Nelson, B. H. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol. Res 3, 926–935 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, Z. Q. et al. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res 22, 6290–6297 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gauthier, L. et al. Paxillin binding to the cytoplasmic domain of CD103 promotes cell adhesion and effector functions for CD8(+) resident memory T cells in tumors. Cancer Res 77, 7072–7082 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Koh, J. et al. Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 8, 13762–13769 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Djenidi, F. et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475–3486 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Lim, C. J. et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut Epub ahead of print. https://doi.org/10.1136/gutjnl-2018-316510 (2018).

  104. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Mann, J. E. et al. Analysis of tumor-infiltrating CD103 resident memory T-cell content in recurrent laryngeal squamous cell carcinoma. Cancer Immunol. Immunother. Epub ahead of print. https://doi.org/10.1007/s00262-018-2256-3 (2018).

  106. Boddupalli, C. S. et al. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight 1, e88955 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Reading, J. L. et al. The function and dysfunction of memory CD8(+) T cells in tumor immunity. Immunol. Rev. 283, 194–212 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8(+) T cells. Nat. Commun. 8, 16073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Richmond, J. M. et al. Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo. J. Invest. Dermatol. Epub ahead of print (2018).

  110. Boldajipour, B., Nelson, A. & Krummel, M. F. Tumor-infiltrating lymphocytes are dynamically desensitized to antigen but are maintained by homeostatic cytokine. JCI Insight 1, e89289 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gabriely, G. et al. Targeting latency-associated peptide promotes antitumor immunity. Sci. Immunol. 2, eaaj1738 (2017).

  112. Lantz, O. & Bendelac, A. An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Rossjohn, J., Pellicci, D. G., Patel, O., Gapin, L. & Godfrey, D. I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Constantinides, M. G. & Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25, 161–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Coquet, J. M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc. Natl Acad. Sci. USA 105, 11287–11292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. & Hogquist, K. A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Lee, Y. J. et al. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43, 566–578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Watarai, H. et al. Development and function of invariant natural killer T cells producing T(h)2-and T(h)17-cytokines. PLoS Biol. 10, e1001255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Horst, A. K., Neumann, K., Diehl, L. & Tiegs, G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol. Immunol. 13, 277–292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bandyopadhyay, K., Marrero, I. & Kumar, V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol. Immunol. 13, 337–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Berzins, S. P., McNab, F. W., Jones, C. M., Smyth, M. J. & Godfrey, D. I. Long-term retention of mature NK1.1+ NKT cells in the thymus. J. Immunol. 176, 4059–4065 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lynch, L. et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue. Nat. Immunol. 16, 85–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Le Bourhis, L. et al. Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol. 32, 212–218 (2011).

    Article  PubMed  CAS  Google Scholar 

  126. Salio, M., Silk, J. D., Jones, E. Y. & Cerundolo, V. Biology of CD1- and MR1-restricted T cells. Annu Rev. Immunol. 32, 323–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Haeryfar, S. M. M., Shaler, C. R. & Rudak, P. T. Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe? Cancer Immunol. Immunother. 67, 1885–1896 (2018).

  128. Slichter, C. K. et al. Distinct activation thresholds of human conventional and innate-like memory T cells. JCI Insight 1, e86292 (2016).

  129. Billerbeck, E. et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc. Natl Acad. Sci. USA 107, 3006–3011 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Turtle, C. J., Swanson, H. M., Fujii, N., Estey, E. H. & Riddell, S. R. A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 31, 834–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Koay, H. F. et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 17, 1300–1311 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Franciszkiewicz, K. et al. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol. Rev. 272, 120–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Meermeier, E. W., Harriff, M. J., Karamooz, E. & Lewinsohn, D. M. MAIT cells and microbial immunity. Immunol. Cell Biol. 96, 607–617 (2018).

  134. Sharma, P. K. et al. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology 145, 443–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rouxel, O. & Lehuen, A. Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol. Cell Biol. 96, 618–629 (2018).

  136. Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 10, e1004210 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hovav, A. H. Human gammadelta T cells: rapid, stable and clonally reactive. Cell Mol. Immunol. 14, 646–648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nielsen, M. M., Witherden, D. A. & Havran, W. L. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733–745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cheng, M. & Hu, S. Lung-resident gammadelta T cells and their roles in lung diseases. Immunology 151, 375–384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chien, Y. H., Meyer, C. & Bonneville, M. gammadelta T cells: first line of defense and beyond. Annu Rev. Immunol. 32, 121–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Jensen, K. D. et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29, 90–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bai, H. et al. Respective IL-17A production by gammadelta T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol. Immunol. 14, 850–861 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Jiang, X. et al. Dermal gammadelta T cells do not freely re-circulate out of skin and produce IL-17 to promote neutrophil infiltration during primary contact hypersensitivity. PLoS ONE 12, e0169397 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Misiak, A., Wilk, M. M., Raverdeau, M. & Mills, K. H. IL-17-producing innate and pathogen-specific tissue resident memory gammadelta T cells expand in the lungs of Bordetella pertussis-infected mice. J. Immunol. 198, 363–374 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Romagnoli, P. A., Sheridan, B. S., Pham, Q. M., Lefrancois, L. & Khanna, K. M. IL-17A-producing resident memory gammadelta T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc. Natl Acad. Sci. USA 113, 8502–8507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bonneville, M., O'Brien, R. L. & Born, W. K. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Wu, D., Wu, P., Qiu, F., Wei, Q. & Huang, J. Human gammadeltaT-cell subsets and their involvement in tumor immunity. Cell Mol. Immunol. 14, 245–253 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Cortez, V. S. et al. Transforming growth factor-beta signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Peng, H., Wisse, E. & Tian, Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol. Immunol. 13, 328–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Peng, H. & Tian, Z. Tissue-resident natural killer cells in the livers. Sci. China Life Sci. 59, 1218–1223 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Peng, H. & Tian, Z. Diversity of tissue-resident NK cells. Semin Immunol. 31, 3–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, L. H., Shin, J. H., Haggadone, M. D. & Sunwoo, J. B. The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J. Exp. Med. 213, 2249–2257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hydes, T. et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun. Inflamm. Dis. 6, 34–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 3, e01659 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Victorino, F. et al. Tissue-resident NK cells mediate ischemic kidney injury and are not depleted by anti-Asialo-GM1 antibody. J. Immunol. 195, 4973–4985 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Richter, M. et al. Collagen distribution and expression of collagen-binding alpha1beta1 (VLA-1) and alpha2beta1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. J. Immunol. 178, 4506–4516 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Sojka, D. K., Tian, Z. & Yokoyama, W. M. Tissue-resident natural killer cells and their potential diversity. Semin. Immunol. 26, 127–131 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tayade, C. et al. Differential transcription of Eomes and T-bet during maturation of mouse uterine natural killer cells. J. Leukoc. Biol. 78, 1347–1355 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Filipovic, I. et al. Molecular definition of group 1 innate lymphoid cells in the mouse uterus. Nat. Commun. 9, 4492 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sojka, D. K. et al. Cutting edge: local proliferation of uterine tissue-resident NK cells during decidualization in mice. J. Immunol. 201, 2551–2556 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Cortez, V. S., Fuchs, A., Cella, M., Gilfillan, S. & Colonna, M. Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state. J. Immunol. 192, 4487–4491 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Li, T. et al. Respiratory influenza virus infection induces memory-like liver NK cells in mice. J. Immunol. 198, 1242–1252 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Ni, X. et al. Cytokine-based generation of CD49a(+)Eomes(-/+) natural killer cell subsets. Front Immunol. 9, 2126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Marquardt, N. et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol. 194, 2467–2471 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Tang, L. et al. Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J. Autoimmun. 67, 29–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cuff, A. O. et al. Eomeshi NK cells in human liver are long-lived and do not recirculate but can be replenished from the circulation. J. Immunol. 197, 4283–4291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Male, V. Liver-resident NK cells: the human factor. Trends Immunol. 38, 307–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Hydes, T. et al. Natural killer cell maturation markers in the human liver and expansion of an NKG2C+KIR+ population. Lancet 385(Suppl 1), S45 (2015).

    Article  PubMed  Google Scholar 

  173. Aw Yeang, H. X. et al. Cutting edge: human CD49e- NK cells are tissue resident in the liver. J. Immunol. 198, 1417–1422 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Fu, B. et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47, 1100–1113 e1106 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Montaldo, E. et al. Unique Eomes(+) NK cell subsets are present in uterus and decidua during early pregnancy. Front Immunol. 6, 646 (2015).

    PubMed  Google Scholar 

  176. Rebuli, M. E., Pawlak, E. A., Walsh, D., Martin, E. M. & Jaspers, I. Distinguishing human peripheral blood NK cells from CD56(dim)CD16(dim)CD69(+)CD103(+) resident nasal mucosal lavage fluid cells. Sci. Rep. 8, 3394 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Cooper, G. E., Ostridge, K., Khakoo, S. I., Wilkinson, T. M. A. & Staples, K. J. Human CD49a(+) lung natural killer cell cytotoxicity in response to influenza A virus. Front. Immunol. 9, 1671 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Dadi, S. et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Robinson, M. W., Harmon, C. & O'Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell Mol. Immunol. 13, 267–276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yamamoto, Y. et al. Lung-resident natural killer cells control pulmonary tumor growth in mice. Cancer Sci. 109, 2670–2676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Stegmann, K. A. et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci. Rep. 6, 26157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0507403), the National Natural Science Foundation of China (81788101, 81701631, 31390433, and 31670908) and the Chinese Academy of Sciences (XDB29030000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyu Sun.

Ethics declarations

Conflict of Interest

No potential conflicts of interest were disclosed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Sun, C., Xiao, W. et al. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell Mol Immunol 16, 205–215 (2019). https://doi.org/10.1038/s41423-018-0192-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0192-y

Keywords

This article is cited by

Search

Quick links