Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Muscle, myeloid cells, and complement: a complex interaction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Alexander, J. J. et al. Abrogation of immune complex glomerulonephritis by native carboxypeptidase and pharmacological antagonism of the C5a receptor. Cell. Mol. Immunol. 13, 651–657 (2016).

    Article  CAS  Google Scholar 

  2. Zhang, C. et al. Complement C3a signaling facilitates skeletal muscle regeneration by regulating monocyte function and trafficking. Nat. Commun. 8, 2078 (2017).

    Article  Google Scholar 

  3. Carroll, M. V., Lack, N., Sim, E., Krarup, A. & Sim, R. B. Multiple routes of complement activation by Mycobacterium bovis BCG. Mol. Immunol. 46, 3367–3378 (2009).

    Article  CAS  Google Scholar 

  4. Ram, S. et al. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J. Exp. Med. 188, 671–680 (1998).

    Article  CAS  Google Scholar 

  5. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    Article  CAS  Google Scholar 

  6. Alexander, J. J., Chaves, L., Chang, A. & Quigg, R. J. The C5a receptor has a key role in immune complex glomerulonephritis in complement factor H-deficient mice. Kidney Int. 82, 961–968 (2012).

    Article  CAS  Google Scholar 

  7. Kablar, B. & Rudnicki, M. A. Skeletal muscle development in the mouse embryo. Histol. Histopathol. 15, 649–656 (2000).

    CAS  PubMed  Google Scholar 

  8. Wehling, M., Spencer, M. J. & Tidball, J. G. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J. Cell Biol. 155, 123–131 (2001).

    Article  CAS  Google Scholar 

  9. Rouaud, T. et al. Complement C3 of the innate immune system secreted by muscle adipogenic cells promotes myogenic differentiation. Sci. Rep. 7, 171 (2017).

    Article  Google Scholar 

  10. Syriga, M. & Mavroidis, M. Complement system activation in cardiac and skeletal muscle pathology: friend or foe? Adv. Exp. Med. Biol. 735, 207–218 (2013).

    Article  CAS  Google Scholar 

  11. Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20, 31–36 (1998).

    Article  CAS  Google Scholar 

  12. Nagaraju, K. et al. Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am. J. Pathol. 172, 774–785 (2008).

    Article  CAS  Google Scholar 

  13. Woodruff, T. M. et al. The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J. Immunol. 181, 8727–8734 (2008).

    Article  CAS  Google Scholar 

  14. Wang, H. A., Lee, J. D., Lee, K. M., Woodruff, T. M. & Noakes, P. G. Complement C5a-C5aR1 signalling drives skeletal muscle macrophage recruitment in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. Skelet. Muscle 7, 10 (2017).

    Article  Google Scholar 

  15. Han, R. et al. Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. J. Clin. Invest. 120, 4366–4374 (2010).

    Article  CAS  Google Scholar 

  16. Naito, A. T. et al. Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149, 1298–1313 (2012).

    Article  CAS  Google Scholar 

  17. Herman, J. R. et al. Correlation between muscle fiber cross-sectional area and strength gain using three different resistance-training programs in college-aged women. J. Strength Cond. Res. 24, 1 (2010).

    Article  Google Scholar 

  18. Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–88 (2013).

    Article  CAS  Google Scholar 

  19. Tidball, J. G. & Wehling-Henricks, M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J. Physiol. 578, 327–336 (2007).

    Article  CAS  Google Scholar 

  20. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessy J. Alexander.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, J.J., Quigg, R.J. Muscle, myeloid cells, and complement: a complex interaction. Cell Mol Immunol 15, 992–993 (2018). https://doi.org/10.1038/s41423-018-0049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0049-4

Keywords

Search

Quick links