Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SDCBP modulates tumor microenvironment, tumor progression and anti-PD1 efficacy in colorectal cancer

Abstract

Anti-programmed cell death 1 (aPD1) therapy has yielded limited success in patients with colorectal cancer (CRC). Syndecan binding protein (SDCBP), encodes a PDZ domain-containing protein that is essential for cellular processes, including cell adhesion, migration, and signal transduction. Here, we investigated the effect of SDCBP on tumor progression, immunotherapy, and the tumor microenvironment (TME) in CRC. High expression of SDCBP is associated with non-response to immunotherapy and correlated with poorer disease-free survival (DFS) in CRC patients. Inhibiting SDCBP by transfecting shRNA or using its inhibitor zinc pyrithione (ZnPT) hindered proliferation and metastasis while enhancing the efficacy of aPD1 treatment in a mouse xenograft model and liver metastasis model. The TME of CRC was significantly altered following ZnPT treatment characterized by a reduced amount of M2 macrophages and a heightened percentage of M1 macrophages. The co-culture system of CRC cells and macrophages provided evidence that SDCBP silencing promoted the repolarisation of M2 macrophages into M1. SDCBP promotes the proliferation, metastasis, and immunotherapy resistance of CRC. Thus, ZnPT represents an effective SDCBP inhibitor and exhibits considerable potential for combination with aPD1 to enhance immunotherapy efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SDCBP promotes the tumor progression and immunotherapy resistance of CRC.
Fig. 2: ZnPT delays CRC progression and enhances the efficacy of PD-1 blockade through suppression of SDCBP expression.
Fig. 3: The combination of ZnPT and aPD1 effectively impedes the metastasis of CRC.
Fig. 4: ZnPT treatment alters the immune landscape of the CRC microenvironment.
Fig. 5: SDCBP deficiency leads to a decline in M2 macrophages infiltrating accompanied by an increase in M1 macrophages in the TME of CRC.
Fig. 6: Co-culture of SDCBP knockdown CRC cells and macrophages shifts the immune phenotype from M2 macrophage polarization to M1.

Similar content being viewed by others

Data availability

All data analyzed and generated in this study are included in this published article and its supplementary information files. Other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11:3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Chen EX, Jonker DJ, Loree JM, Kennecke HF, Berry SR, Couture F, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 Study. JAMA Oncol. 2020;6:831–8.

    Article  PubMed  Google Scholar 

  4. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7:153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cervantes A, Adam R, Roselló S, Arnold D, Normanno N, Taïeb J, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023;34:10–32.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, et al. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer. 2023;22:58.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Raskov H, Orhan A, Gaggar S, Gögenur I. Cancer-associated fibroblasts and tumor-associated macrophages in cancer and cancer immunotherapy. Front Oncol. 2021;11:668731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  CAS  PubMed  Google Scholar 

  9. Krneta T, Gillgrass A, Poznanski S, Chew M, Lee AJ, Kolb M, et al. M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. J Leukoc Biol. 2017;101:285–95.

    Article  CAS  PubMed  Google Scholar 

  10. Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 2020;182:886–900.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fang DD, Tang Q, Kong Y, Wang Q, Gu J, Fang X, et al. MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment. J Immunother Cancer. 2019;7:327.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pradhan AK, Maji S, Das SK, Emdad L, Sarkar D, Fisher PB. MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer Metastasis Rev. 2020;39:769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, et al. MDA-9/Syntenin (SDCBP): novel gene and therapeutic target for cancer metastasis. Pharm Res. 2020;155:104695.

    Article  CAS  Google Scholar 

  15. Boukerche H, Su Z-z, Emdad L, Sarkar D, Fisher PB. mda-9/Syntenin regulates the metastatic phenotype in human melanoma cells by activating nuclear factor-kappaB. Cancer Res. 2007;67:1812–22.

    Article  CAS  PubMed  Google Scholar 

  16. Hwangbo C, Kim J, Lee JJ, Lee J-H. Activation of the integrin effector kinase focal adhesion kinase in cancer cells is regulated by crosstalk between protein kinase Calpha and the PDZ adapter protein mda-9/Syntenin. Cancer Res. 2010;70:1645–55.

    Article  CAS  PubMed  Google Scholar 

  17. Das SK, Pradhan AK, Bhoopathi P, Talukdar S, Shen X-N, Sarkar D, et al. The MDA-9/syntenin/IGF1R/STAT3 axis directs prostate cancer invasion. Cancer Res. 2018;78:2852–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iwamoto K, Takahashi H, Okuzaki D, Osawa H, Ogino T, Miyoshi N, et al. Syntenin-1 promotes colorectal cancer stem cell expansion and chemoresistance by regulating prostaglandin E2 receptor. Br J Cancer. 2020;123:955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamura K, Ikutani M, Yoshida T, Tanaka-Hayashi A, Yanagibashi T, Inoue R, et al. Increased production of intestinal immunoglobulins in Syntenin-1-deficient mice. Immunobiology. 2015;220:597–604.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Bai W, Zhou T, Xie Y, Yang B, Sun J, et al. SDCBP promotes pancreatic cancer progression by preventing YAP1 from β-TrCP-mediated proteasomal degradation. Gut. 2023;72:1722–37.

    Article  CAS  PubMed  Google Scholar 

  21. Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun. 2018;9:5379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Talukdar S, Das SK, Pradhan AK, Emdad L, Windle JJ, Sarkar D, et al. MDA-9/syntenin (SDCBP) is a critical regulator of chemoresistance, survival and stemness in prostate cancer stem cells. Cancers. 2019;12:53.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat Cell Biol. 2021;23:631–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarkar D, Boukerche H, Su Z-Z, Fisher PB. mda-9/Syntenin: more than just a simple adapter protein when it comes to cancer metastasis. Cancer Res. 2008;68:3087–93.

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Yang Y, Wang H, Wang B, Zhao K, Jiang W, et al. Syntenin1/MDA-9 (SDCBP) induces immune evasion in triple-negative breast cancer by upregulating PD-L1. Breast Cancer Res Treat. 2018;171:345–57.

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Huang W, Fang S, Li Z, Li Z, Wang F, et al. Zinc pyrithione induced volatile fatty acids promotion derived from sludge anaerobic digestion: Interrelating the affected steps with microbial metabolic regulation and adaptive responses. Water Res. 2023;234:119816.

    Article  CAS  PubMed  Google Scholar 

  28. Tailler M, Senovilla L, Lainey E, Thépot S, Métivier D, Sébert M, et al. Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia. Oncogene. 2012;31:3536–46.

    Article  CAS  PubMed  Google Scholar 

  29. Srivastava G, Matta A, Fu G, Somasundaram RT, Datti A, Walfish PG, et al. Anticancer activity of pyrithione zinc in oral cancer cells identified in small molecule screens and xenograft model: Implications for oral cancer therapy. Mol Oncol. 2015;9:1720–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rudolf E, Cervinka M. Zinc pyrithione induces cellular stress signaling and apoptosis in Hep-2 cervical tumor cells: the role of mitochondria and lysosomes. Biometals. 2010;23:339–54.

    Article  CAS  PubMed  Google Scholar 

  31. Hashemi M, Ghavami S, Eshraghi M, Booy EP, Los M. Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. Eur J Pharm. 2007;557:9–19.

    Article  CAS  Google Scholar 

  32. Carraway RE, Dobner PR. Zinc pyrithione induces ERK- and PKC-dependent necrosis distinct from TPEN-induced apoptosis in prostate cancer cells. Biochim Biophys Acta. 2012;1823:544–57.

    Article  CAS  PubMed  Google Scholar 

  33. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23:1148–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8:207.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  CAS  PubMed  Google Scholar 

  37. Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. mBio. 2013;4:e00264–e00213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manna D, Reghupaty SC, Camarena MDC, Mendoza RG, Subler MA, Koblinski JE, et al. Melanoma differentiation associated gene-9/syndecan binding protein promotes hepatocellular carcinoma. Hepatology. 2023;78:1727–41.

    Article  PubMed  Google Scholar 

  39. Sala-Valdés M, Gordón-Alonso M, Tejera E, Ibáñez A, Cabrero JR, Ursa A, et al. Association of syntenin-1 with M-RIP polarizes Rac-1 activation during chemotaxis and immune interactions. J Cell Sci. 2012;125(Pt 5):1235–46.

    Article  PubMed  Google Scholar 

  40. Cho W, Kim H, Lee J-H, Hong SH, Choe J. Syntenin is expressed in human follicular dendritic cells and involved in the activation of focal adhesion kinase. Immune Netw. 2013;13:199–204.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82203098) and Health and Family Planning Scientific Research Project of Pudong New Area Health Committee (No. PW2022E-02).

Author information

Authors and Affiliations

Authors

Contributions

Yandong Li, Yong Gao, and Zhe Zhu designed and supervised the study; Jiahua Yu and Shijun Yu performed most of cell and animal experiments and analyzed the data; Jin Bai assisted cell biology experiments; Jiahua Yu and Yandong Li wrote the manuscript. All authors have read and approved this final manuscript.

Corresponding authors

Correspondence to Zhe Zhu, Yong Gao or Yandong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study obtained approval from the Medical Ethics Committees of Shanghai East Hospital. All animal studies followed the guidelines approved by the Animal Experimentation Ethics Committee of Shanghai East Hospital, Tongji University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Yu, S., Bai, J. et al. SDCBP modulates tumor microenvironment, tumor progression and anti-PD1 efficacy in colorectal cancer. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00758-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00758-8

Search

Quick links