Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific driving of the suicide E gene by the CEA promoter enhances the effects of paclitaxel in lung cancer

A Correction to this article was published on 06 February 2020

This article has been updated

Abstract

Classical chemotherapy for lung cancer needs new strategies to enhance its antitumor effect. The cytotoxicity, nonspecificity, and low bioavailability of paclitaxel (PTX) limits their use in this type of cancer. Suicide gene therapy using tumor-specific promoters may increase treatment effectiveness. We used carcinoembryonic antigen (CEA) as a tumor-specific promoter to drive the bacteriophage E gene (pCEA-E) towards lung cancer cells (A-549 human and LL2 mice cell lines) but not normal lung cells (L132 human embryonic lung cell line), in association with PTX as a combined treatment. The study was carried out using cell cultures, tumor spheroid models (MTS), subcutaneous induced tumors and lung cancer stem cells (CSCs). pCEA-E induced significant inhibition of A-549 and LL2 cell proliferation in comparison to L132 cells, which have lower CEA expression levels. Moreover, pCEA-E induced an important decrease in volume growth of A-549 and LL2 MTS producing intense apoptosis, in comparison to L132 MTS. In addition, pCEA-E enhanced the antitumor effects of PTX when combined, showing a synergistic effect. This effect was also observed in A-549 CSCs, which have been related to the recurrence of cancer. The in vivo study corroborated the effectiveness of the pCEA-E-PTX combined therapy, inducing a greater decrease in tumor volume compared to PTX and pCEA-E alone. Our results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically towards lung cancer cells, and may be used to enhance the effectiveness of PTX against this type of tumor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 06 February 2020

    The original version of this Article contained an error in the spelling of the author Ana Rosa Rama Ballesteros, which was incorrectly given as Ana Rosa Rama. This has now been corrected in both the PDF and HTML versions of the Article.

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol, Biomark Prev. 2016;25:16–27.

    Article  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  3. Joshi M, Liu X, Belani CP. Taxanes, past, present, and future impact on non-small cell lung cancer. Anti-Cancer Drugs. 2014;25:571–83.

    Article  CAS  PubMed  Google Scholar 

  4. Cao YN, Zheng LL, Wang D, Liang XX, Gao F, Zhou XL. Recent advances in microtubule-stabilizing agents. Eur J Medicinal Chem. 2018;143:806–28.

    Article  CAS  Google Scholar 

  5. Alves RC, Fernandes RP, Eloy JO, Salgado HRN, Chorilli M. Characteristics, properties and analytical methods of paclitaxel: a review. Crit Rev Anal Chem. 2018;48:110−118. https://doi.org/10.1080/10408347.2017.1416283.

  6. Valerii MC, Benaglia M, Caggiano C, Papi A, Strillacci A, Lazzarini G, et al. Drug delivery by polymeric micelles: an in vitro and in vivo study to deliver lipophilic substances to colonocytes and selectively target inflamed colon. Nanomed: Nanotechnol, Biol, Med. 2013;9:675–85.

    Article  CAS  Google Scholar 

  7. Cheng HY, Zhang T, Qu Y, Shi WJ, Lou G, Liu YX, et al. Synergism between RIZ1 gene therapy and paclitaxel in SiHa cervical cancer cells. Cancer Gene Ther. 2016;23:392–5.

    Article  CAS  PubMed  Google Scholar 

  8. Rama AR, Prados J, Melguizo C, Alvarez PJ, Ortiz R, Madeddu R, et al. E phage gene transfection associated to chemotherapeutic agents increases apoptosis in lung and colon cancer cells. Bioengineered Bugs. 2011;2:163–7.

    Article  PubMed  Google Scholar 

  9. Rama AR, Prados J, Melguizo C, Ortiz R, Alvarez PJ, Rodriguez-Serrano F, et al. E phage gene transfection enhances sensitivity of lung and colon cancer cells to chemotherapeutic agents. Int J Oncol. 2010;37:1503–14.

    CAS  PubMed  Google Scholar 

  10. Ortiz R, Prados J, Melguizo C, Rama AR, Segura A, Rodriguez-Serrano F, et al. The cytotoxic activity of the phage E protein suppress the growth of murine B16 melanomas in vitro and in vivo. J Mol Med (Berl). 2009;87:899–911.

    Article  CAS  Google Scholar 

  11. Li YF, Yuan YY, Zhang YM, Zhao N, Zhang Q, Meng FX, et al. HSVtk/GCV system on hepatoma carcinoma cells: Construction of the plasmid pcDNA3.1pAFP-TK and targeted killing effect. Mol Med Rep. 2017;16:764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Danda R, Krishnan G, Ganapathy K, Krishnan UM, Vikas K, Elchuri S, et al. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy. PLoS ONE. 2013;8:e83398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Niu Y, Li JS, Luo XR. Enhancement of expression of survivin promoter-driven CD/TK double suicide genes by the nuclear matrix attachment region in transgenic gastric cancer cells. Gene. 2014;534:177–82.

    Article  CAS  PubMed  Google Scholar 

  14. Wu K, Yang L, Huang Z, Zhao H, Wang J, Xu S. A double suicide gene system driven by vascular endothelial growth factor promoter selectively kills human hepatocellular carcinoma cells. Oncol Lett. 2016;11:3152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Higashi K, Hazama S, Araki A, Yoshimura K, Iizuka N, Yoshino S, et al. A novel cancer vaccine strategy with combined IL-18 and HSV-TK gene therapy driven by the hTERT promoter in a murine colorectal cancer model. Int J Oncol. 2014;45:1412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rama AR, Hernandez R, Perazzoli G, Burgos M, Melguizo C, Velez C, et al. Specific colon cancer cell cytotoxicity induced by bacteriophage E gene expression under transcriptional control of carcinoembryonic antigen promoter. Int J Mol Sci. 2015;16:12601–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou MQ, Du Y, Liu YW, Wang YZ, He YQ, Yang CX, et al. Clinical and experimental studies regarding the expression and diagnostic value of carcinoembryonic antigen-related cell adhesion molecule 1 in non-small-cell lung cancer. BMC Cancer. 2013;13:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 2012;76:138–43.

    Article  CAS  PubMed  Google Scholar 

  19. Facchinetti F, Aldigeri R, Aloe R, Bortesi B, Ardizzoni A, Tiseo M. CEA serum level as early predictive marker of outcome during EGFR-TKI therapy in advanced NSCLC patients. Tumour Biol. 2015;36:5943–51.

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi Y, Horio H, Hato T, Harada M, Matsutani N, Kawamura M. Predictors of post-recurrence survival in patients with non-small-cell lung cancer initially completely resected. Interact Cardiovascular Thorac Surg. 2015;21:14–20.

    Article  Google Scholar 

  21. Kubo T, Takigawa N, Osawa M, Harada D, Ninomiya T, Ochi N, et al. Subpopulation of small-cell lung cancer cells expressing CD133 and CD87 show resistance to chemotherapy. Cancer Sci. 2013;104:78–84.

    Article  CAS  PubMed  Google Scholar 

  22. Tian C, Huang D, Yu Y, Zhang J, Fang Q, Xie C. ABCG1 as a potential oncogene in lung cancer. Exp Therapeutic Med. 2017;13:3189–94.

    Article  CAS  Google Scholar 

  23. Melguizo C, Prados J, Luque R, Ortiz R, Caba O, Alvarez PJ, et al. Modulation of MDR1 and MRP3 gene expression in lung cancer cells after paclitaxel and carboplatin exposure. Int J Mol Sci. 2012;13:16624–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suresh R, Ali S, Ahmad A, Philip PA, Sarkar FH. The role of cancer stem cells in recurrent and drug-resistant lung cancer. Adv Exp Med Biol. 2016;890:57–74.

    Article  PubMed  Google Scholar 

  25. Rama AR, Prados J, Melguizo C, Burgos M, Alvarez PJ, Rodriguez-Serrano F, et al. Synergistic antitumoral effect of combination E gene therapy and Doxorubicin in MCF-7 breast cancer cells. Biomedicine Pharmacother=Biomedecine pharmacotherapie. 2011;65:260–70.

    Article  CAS  Google Scholar 

  26. Prados J, Melguizo C, Rama AR, Ortiz R, Segura A, Boulaiz H, et al. Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemother Pharmacol. 2010;66:69–78.

    Article  CAS  PubMed  Google Scholar 

  27. Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, et al. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale. 2015;7:8607–18.

    Article  CAS  PubMed  Google Scholar 

  28. Leiva MC, Ortiz R, Contreras-Caceres R, Perazzoli G, Mayevych I, Lopez-Romero JM, et al. Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro. Sci Rep. 2017;7:13506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Elwood Martin R, Adamson S, Korchinski M, Granger-Brown A, V RR, J AB, et al. Incarcerated women develop a nutrition and fitness program: participatory research. Int J Prisoner Health. 2013;9:142–50.

    Article  Google Scholar 

  30. Sung SY, Chang JL, Chen KC, Yeh SD, Liu YR, Su YH, et al. Co-targeting prostate cancer epithelium and bone stroma by human osteonectin-promoter-mediated suicide gene therapy effectively inhibits androgen-independent prostate cancer growth. PLoS ONE. 2016;11:e0153350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pan J, Wang H, Liu X, Hu J, Song W, Luo J, et al. Tumor restrictive suicide gene therapy for glioma controlled by the FOS promoter. PLoS ONE. 2015;10:e0143112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fukazawa T, Maeda Y, Matsuoka J, Tanaka N, Tanaka H, Durbin ML, et al. Drug-regulatable cancer cell death induced by BID under control of the tissue-specific, lung cancer-targeted TTS promoter system. Int J Cancer. 2009;125:1975–84.

    Article  CAS  PubMed  Google Scholar 

  33. Alekseenko IV, Pleshkan VV, Kopantzev EP, Stukacheva EA, Chernov IP, Vinogradova TV, et al. Activity of the upstream component of tandem TERT/survivin promoters depends on features of the downstream component. PLoS ONE. 2012;7:e46474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chao CN, Lin MC, Fang CY, Chen PL, Chang D, Shen CH, et al. Gene therapy for human lung adenocarcinoma using a suicide gene driven by a lung-specific promoter delivered by JC virus-like particles. PLoS ONE. 2016;11:e0157865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Michl M, Koch J, Laubender RP, Modest DP, Giessen C, Schulz C, et al. Tumor markers CEA and CA 19-9 correlate with radiological imaging in metastatic colorectal cancer patients receiving first-line chemotherapy. Tumour Biol. 2014;35:10121–7.

    Article  CAS  PubMed  Google Scholar 

  36. Rama AR, Aguilera A, Melguizo C, Caba O, Prados J. Tissue specific promoters in colorectal cancer. Dis Markers. 2015;2015:390161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lai H, Jin Q, Lin Y, Mo X, Li B, He K, et al. Combined use of lysyl oxidase, carcino-embryonic antigen, and carbohydrate antigens improves the sensitivity of biomarkers in predicting lymph node metastasis and peritoneal metastasis in gastric cancer. Tumour Biol. 2014;35:10547–54.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao W, Yu H, Han Z, Gao N, Xue J, Wang Y. Clinical significance of joint detection of serum CEA, SCCA, and bFGF in the diagnosis of lung cancer. Int J Clin Exp Pathol. 2015;8:9506–11.

    PubMed  PubMed Central  Google Scholar 

  39. Zhang R, Zhang X, Ma B, Xiao B, Huang F, Huang P, et al. Enhanced antitumor effect of combining TRAIL and MnSOD mediated by CEA-controlled oncolytic adenovirus in lung cancer. Cancer Gene Ther. 2016;23:168–77.

    Article  CAS  PubMed  Google Scholar 

  40. Xu R, Guo LJ, Xin J, Li WM, Gao Y, Zheng YX, et al. Luciferase assay to screen tumour-specific promoters in lung cancer. Asian Pac J Cancer Prev. 2014;14:6557–62.

    Article  PubMed  Google Scholar 

  41. Qiu Y, Peng GL, Liu QC, Li FL, Zou XS, He JX. Selective killing of lung cancer cells using carcinoembryonic antigen promoter and double suicide genes, thymidine kinase and cytosine deaminase (pCEA-TK/CD). Cancer Lett. 2012;316:31–8.

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Zhao P, Su W, Wang S, Liao Z, Niu R, et al. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials. 2010;31:8741–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao F, Yin H, Li J. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials. 2014;35:1050–62.

    Article  CAS  PubMed  Google Scholar 

  44. Azimi A, Majidinia M, Shafiei-Irannejad V, Jahanban-Esfahlan R, Ahmadi Y, Karimian A, et al. Suppression of p53R2 gene expression with specific siRNA sensitizes HepG2 cells to doxorubicin. Gene. 2018;642:249–55.

    Article  CAS  PubMed  Google Scholar 

  45. Doloff JC, Su T, Waxman DJ. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+. BMC Cancer. 2010;10:487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review. Clin Pharmacokinet 2018;57:7–19. https://doi.org/10.1007/s40262-017-0563-z.

  47. Tuppurainen L, Sallinen H, Karvonen A, Valkonen E, Laakso H, Liimatainen T, et al. Combined gene therapy using AdsVEGFR2 and AdsTie2 with chemotherapy reduces the growth of human ovarian cancer and formation of ascites in mice. Int J Gynecol Cancer. 2017;27:879–86.

    Article  PubMed  Google Scholar 

  48. Lang B, Shang C, Meng L. Targeted silencing of S100A8 gene by miR-24 to increase chemotherapy sensitivity of endometrial carcinoma cells to paclitaxel. Med Sci Monit. 2016;22:1953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Gao S, Chen X, Liu M, Mao C, Fang X. Overexpression of miR-203 sensitizes paclitaxel (Taxol)-resistant colorectal cancer cells through targeting the salt-inducible kinase 2 (SIK2). Tumour Biol. 2016;37:12231–9.

    Article  CAS  PubMed  Google Scholar 

  50. Prados J, Melguizo C, Rama A, Ortiz R, Boulaiz H, Rodriguez-Serrano F, et al. Combined therapy using suicide gef gene and paclitaxel enhances growth inhibition of multicellular tumour spheroids of A-549 human lung cancer cells. Int J Oncol. 2008;33:121–7.

    CAS  PubMed  Google Scholar 

  51. Larzabal L, El-Nikhely N, Redrado M, Seeger W, Savai R, Calvo A. Differential effects of drugs targeting cancer stem cell (CSC) and non-CSC populations on lung primary tumors and metastasis. PLoS ONE. 2013;8:e79798.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao L, Li Q, Bai C, Li Y, Cao G, Qi Z. [Experimental study of tissue-specific suicide gene therapy for lung adenocarcinoma]. Zhongguo fei ai za zhi = Chin J lung cancer. 2004;7:290–3.

    CAS  Google Scholar 

Download references

Funding

This work was funded by Consejería de Salud de la Junta de Andalucía (project PI-0476-2016 and PI-0102-2017) and by Granada University (project PP2015-13 and financial Groups 09/112016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rosa Rama Ballesteros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama Ballesteros, A., Hernández, R., Perazzoli, G. et al. Specific driving of the suicide E gene by the CEA promoter enhances the effects of paclitaxel in lung cancer. Cancer Gene Ther 27, 657–668 (2020). https://doi.org/10.1038/s41417-019-0137-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0137-3

Search

Quick links