Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Pirfenidone alleviates fibrosis by acting on tumour–stroma interplay in pancreatic cancer

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a 5-year survival rate of 12%. The abundant mesenchyme is partly responsible for the malignancy. The antifibrotic therapies have gained attention in recent research. However, the role of pirfenidone, an FDA-approved drug for idiopathic pulmonary fibrosis, remains unclear in PDAC.

Methods

Data from RNA-seq of patient-derived xenograft (PDX) models treated with pirfenidone were integrated using bioinformatics tools to identify the target of cell types and genes. Using confocal microscopy, qRT-PCR and western blotting, we validated the signalling pathway in tumour cells to regulate the cytokine secretion. Further cocultured system demonstrated the interplay to regulate stroma fibrosis. Finally, mouse models demonstrated the potential of pirfenidone in PDAC.

Results

Pirfenidone can remodulate multiple biological pathways, and exerts an antifibrotic effect through inhibiting the secretion of PDGF-bb from tumour cells by downregulating the TGM2/NF-kB/PDGFB pathway. Thus, leading to a subsequent reduction in collagen X and fibronectin secreted by CAFs. Moreover, the mice orthotopic pancreatic tumour models demonstrated the antifibrotic effect and potential to sensitise gemcitabine.

Conclusions

Pirfenidone may alter the pancreatic milieu and alleviate fibrosis through the regulation of tumour-stroma interactions via the TGM2/NF-kB/PDGFB signalling pathway, suggesting potential therapeutic benefits in PDAC management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pirfenidone alters the pancreatic milieu in vivo.
Fig. 2: Pirfenidone can alleviate interstitial fibrosis by downregulating TGM2 in a PDX model.
Fig. 3: Pirfenidone exerts antifibrotic effects by acting on tumour cells in PDAC.
Fig. 4: TGM2 promotes secretion of the cytokine PDGF-bb secretion by upregulating PDGFB transcription in PDAC.
Fig. 5: TGM2 promotes the activation of the NF-kB/PDGFB signalling pathway to upregulate collagen secretion by CAFs.
Fig. 6: Pirfenidone is a potential drug for antifibrotic therapy in PDAC.

Similar content being viewed by others

Data availability

The data generated in this study are publicly available in the TCGA-PAAD database. Other supporting data are available from the corresponding author upon reasonable request.

Code availability

The R code for statistical analysis is found in the supplemental information.

References

  1. Jain T, Dudeja V. The war against pancreatic cancer in 2020—advances on all fronts. Nat Rev Gastroenterol Hepatol. 2021;18:99–100.

    Article  PubMed  Google Scholar 

  2. Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E, Deng Z, et al. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med. 2018;215:2536–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL, Zuo C, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity. 2017;47:597.

    Article  CAS  PubMed  Google Scholar 

  4. Kim KW, Williams JW, Wang YT, Ivanov S, Gilfillan S, Colonna M, et al. MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med. 2016;213:1951–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363:1190.

    Article  Google Scholar 

  6. Zhang N, Kim SH, Gainullina A, Erlich EC, Onufer EJ, Kim J, et al. LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J Exp Med. 2021;218:e20210924.

  7. Liou GY, Doppler H, Necela B, Krishna M, Crawford HC, Raimondo M, et al. Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-kappa B and MMPs. J Cell Biol. 2013;202:563–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Investig. 2007;117:50–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17:487–505.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lehmann M, Kolb M. Another piece in the pirfenidone puzzle. Eur Respir J. 2023;61:2300240.

  11. Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol. 2014;10:226–37.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22:1144–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Marquardt V, Theruvath J, Pauck D, Picard D, Qin N, Blümel L, et al. Tacedinaline (CI-994), a class I HDAC inhibitor, targets intrinsic tumor growth and leptomeningeal dissemination in MYC-driven medulloblastoma while making them susceptible to anti-CD47-induced macrophage phagocytosis via NF-kB-TGM2 driven tumor inflammation. J Immunother Cancer. 2023;11:e005871.

  14. Xi Y, Li YP, Xu PF, Li SH, Liu ZS, Tung HC, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021;7:eabg9241.

  15. Tsuchiya H, Kaibori M, Yanagida H, Yokoigawa N, Kwon AH, Okumura T, et al. Pirfenidone prevents endotoxin-induced liver injury after partial hepatectomy in rats. J Hepatol. 2004;40:94–101.

    Article  CAS  PubMed  Google Scholar 

  16. Lewis GA, Dodd S, Clayton D, Bedson E, Eccleson H, Schelbert EB, et al. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat Med. 2021;27:1477.

    Article  CAS  PubMed  Google Scholar 

  17. Laurent P, Allard B, Manicki P, Jolivel V, Levionnois E, Jeljeli M, et al. TGFβ promotes low IL10-producing ILC2 with profibrotic ability involved in skin fibrosis in systemic sclerosis. Ann Rheum Dis. 2021;80:1594–603.

    Article  CAS  PubMed  Google Scholar 

  18. An J, Jiang T, Qi L, Xie K. Acinar cells and the development of pancreatic fibrosis. Cytokine Growth Factor Rev. 2023;71–72:40–53.

    Article  PubMed  Google Scholar 

  19. Drifka CR, Loeffler AG, Mathewson K, Keikhosravi A, Eickhoff JC, Liu YM, et al. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget. 2016;7:76197–213.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mascharak S, Guo JL, Foster DS, Khan A, Davitt MF, Nguyen AT, et al. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep Med. 2023;4:101248.

  21. Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021;27:152–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee B, Namkoong H, Yang Y, Huang H, Heller D, Szot GL, et al. Single-cell sequencing unveils distinct immune microenvironments with CCR6-CCL20 crosstalk in human chronic pancreatitis. Gut. 2022;71:1831–42.

    Article  CAS  PubMed  Google Scholar 

  23. Kocher HM, Basu B, Froeling FEM, Sarker D, Slater S, Carlin D, et al. Phase I clinical trial repurposing all-trans retinoic acid as a stromal targeting agent for pancreatic cancer. Nat Commun. 2020;11:4841.

  24. Ramakrishnan P, Loh WM, Gopinath SCB, Bonam SR, Fareez IM, Mac Guad R, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B. 2020;10:399–413.

    Article  CAS  PubMed  Google Scholar 

  25. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4:2516.

  26. Neesse A, Frese KK, Bapiro TE, Nakagawa T, Sternlicht MD, Seeley TW, et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci USA. 2013;110:12325–30.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  27. Usugi E, Ishii K, Hirokawa Y, Kanayama K, Matsuda C, Uchida K, et al. Antifibrotic agent pirfenidone suppresses proliferation of human pancreatic cancer cells by inducing G0/G1 cell cycle arrest. Pharmacology. 2019;103:250–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kozono S, Ohuchida K, Eguchi D, Ikenaga N, Fujiwara K, Cui L, et al. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 2013;73:2345–56.

    Article  CAS  PubMed  Google Scholar 

  29. Xavier CPR, Castro I, Caires HR, Ferreira D, Cavadas B, Pereira L, et al. Chitinase 3-like-1 and fibronectin in the cargo of extracellular vesicles shed by human macrophages influence pancreatic cancer cellular response to gemcitabine. Cancer Lett. 2021;501:210–23.

    Article  CAS  PubMed  Google Scholar 

  30. Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the stromal pro-tumoral hyaluronan-CD44 pathway in pancreatic cancer. Int J Mol Sci. 2021;22:3953.

  31. Erkan M, Kleeff J, Gorbachevski A, Reiser C, Mitkus T, Esposito I, et al. Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology. 2007;132:1447–64.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao J, Zhu Y, Li Z, Liang J, Zhang Y, Zhou S, et al. Pirfenidone-loaded exosomes derived from pancreatic ductal adenocarcinoma cells alleviate fibrosis of premetastatic niches to inhibit liver metastasis. Biomater Sci. 2022;10:6614–26.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Yu R, Zhao C, Liang J, Zhang Y, Su H, et al. CAFs homologous biomimetic liposome bearing BET inhibitor and pirfenidone synergistically promoting antitumor efficacy in pancreatic ductal adenocarcinoma. Adv Sci. 2024;11:e2305279.

    Article  Google Scholar 

  34. Zheng W, Chen QP, Liu HX, Zeng L, Zhou YC, Liu XL, et al. SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes. Autophagy. 2023;19:839–57.

    Article  CAS  PubMed  Google Scholar 

  35. Huang H, Chen Z, Ni X. Tissue transglutaminase-1 promotes stemness and chemoresistance in gastric cancer cells by regulating Wnt/beta-catenin signaling. Exp Biol Med. 2017;242:194–202.

    Article  CAS  Google Scholar 

  36. Fisher ML, Keillor JW, Xu W, Eckert RL, Kerr C. Transglutaminase is required for epidermal squamous cell carcinoma stem cell survival. Mol Cancer Res. 2015;13:1083–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wang Z, Moresco P, Yan R, Li J, Gao Y, Biasci D, et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Proc Natl Acad Sci USA. 2022;119:e2119463119.

  38. Malkomes P, Lunger I, Oppermann E, Lorenz J, Faqar-Uz-Zaman SF, Han JY, et al. Transglutaminase 2 is associated with adverse colorectal cancer survival and represents a therapeutic target. Cancer Gene Ther. 2023;30:1346–54.

  39. Chen JSK, Mehta K. Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell B. 1999;31:817–36.

    Article  CAS  Google Scholar 

  40. Balajthy Z, Csomos K, Vamosi G, Szanto A, Lanotte M, Fesus L. Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood. 2006;108:2045–54.

    Article  CAS  PubMed  Google Scholar 

  41. Sarang Z, Molnar P, Nemeth T, Gomba S, Kardon T, Melino G, et al. Tissue transglutaminase (TG2) acting as G protein protects hepatocytes against Fas-mediated cell death in mice. Hepatology. 2005;42:578–87.

    Article  CAS  PubMed  Google Scholar 

  42. Lee J, Condello S, Yakubov B, Emerson R, Caperell-Grant A, Hitomi K, et al. Tissue transglutaminase mediated tumor-stroma interaction promotes pancreatic cancer progression. Clin Cancer Res. 2015;21:4482–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhang S, Yao HF, Li H, Su T, Jiang SH, Wang H, et al. Transglutaminases are oncogenic biomarkers in human cancers and therapeutic targeting of TGM2 blocks chemoresistance and macrophage infiltration in pancreatic cancer. Cell Oncol. 2023;46:1473–92.

  44. Wang FJ, Wang L, Qu C, Chen LY, Geng YW, Cheng CS, et al. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer. 2021;21:1–11.

  45. Ashour AA, Gurbuz N, Alpay SN, Abdel-Aziz AA, Mansour AM, Huo L, et al. Elongation factor-2 kinase regulates TG2/beta1 integrin/Src/uPAR pathway and epithelial-mesenchymal transition mediating pancreatic cancer cells invasion. J Cell Mol Med. 2014;18:2235–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Mehta K, Han A. Tissue transglutaminase (TG2)-induced inflammation in initiation, progression, and pathogenesis of pancreatic cancer. Cancers. 2011;3:897–912.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wen Z, Ji X, Tang J, Lin G, Xiao L, Liang C, et al. Positive feedback regulation between transglutaminase 2 and toll-like receptor 4 signaling in hepatic stellate cells correlates with liver fibrosis post schistosoma japonicum infection. Front Immunol. 2017;8:1808.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lei Z, Chai N, Tian M, Zhang Y, Wang G, Liu J, et al. Novel peptide GX1 inhibits angiogenesis by specifically binding to transglutaminase-2 in the tumorous endothelial cells of gastric cancer. Cell Death Dis. 2018;9:579.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE, Johnson GVW, et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Resp Crit Care. 2011;184:699–707.

    Article  CAS  Google Scholar 

  50. Daneshpour N, Griffin M, Collighan R, Perrie Y. Targeted delivery of a novel group of site-directed transglutaminase inhibitors to the liver using liposomes: a new approach for the potential treatment of liver fibrosis. J Drug Target. 2011;19:624–31.

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen TN, Suzuki H, Yoshida Y, Ohkubo JI, Wakasugi T, Kitamura T. Decreased CFTR/PPAR? and increased transglutaminase 2 in nasal polyps. Auris Nasus Larynx. 2022;49:964–72.

    Article  PubMed  Google Scholar 

  52. Jeon HY, Lee AJ, Kim EB, Kim M, Park WS, Ha KS. C-peptide attenuates hyperglycemia-induced pulmonary fibrosis by inhibiting transglutaminase 2. J Mol Endocrinol. 2022;68:209–23.

    Article  CAS  PubMed  Google Scholar 

  53. Andenæs K, Rypdal KB, Palmero S, Tønnessen T, Lunde IG. The small leucine-rich proteoglycan fibromodulin exerts anti-fibrotic effects in cultured human cardiac fibroblasts. Genet Mol Res. 2022;21:GMR19007.

Download references

Funding

This study was jointly supported by the National Natural Science Foundation of China (U21A20374 and 82072698), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), and Natural Science Foundation of Shanghai (23ZR1479300).

Author information

Authors and Affiliations

Authors

Contributions

YL, MX and XY designed the study. YL, JX, MX, DW and HX performed experiments and collected data, and data analysis was performed by YL, MX, JY and HP. The article was drafted by YL, MX and SS. Critical revision for important intellectual content was performed by all authors (YL, JX, MX, DW, HX, JY, HP, SS and XY). All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Xianjun Yu or Si Shi.

Ethics declarations

Competing interests

The authors declare no competing interests

Ethics approval and consent to participate

This study was approved by the Fudan University Shanghai Cancer Center with informed consent and Institutional Research Ethics Committee approval (Shanghai, China).

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Xu, J., Xiao, M. et al. Pirfenidone alleviates fibrosis by acting on tumour–stroma interplay in pancreatic cancer. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02631-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02631-9

Search

Quick links